Current strategies in extending half-lives of therapeutic proteins.

J Control Release

Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia. Electronic address:

Published: May 2019

AI Article Synopsis

  • Macromolecular protein and peptide therapeutics have shown effectiveness in treating serious diseases and have significantly increased in the pharmaceutical market due to biotechnological advancements.
  • Their main challenge lies in rapid degradation and elimination in the body, which results from factors like enzymatic breakdown and organ metabolism, leading to short half-lives.
  • To address this, innovative strategies such as attaching larger molecules or modifying amino acid chains are being developed to extend these proteins' half-lives, improving their pharmacokinetic properties and patient compliance.

Article Abstract

Macromolecular protein and peptide therapeutics have been proven to be effective in treating critical human diseases precisely. Thanks to biotechnological advancement, a huge number of proteins and peptide therapeutics were made their way to pharmaceutical market in past few decades. However, one of the biggest challenges to be addressed for protein therapeutics during clinical application is their fast degradation in serum and quick elimination owing to enzymatic degradation, renal clearance, liver metabolism and immunogenicity, attributing to the short half-lives. Size and hydrophobicity of protein molecules make them prone to kidney filtration and liver metabolism. On the other hand, proteasomes responsible for protein destruction possess the capability of specifically recognizing almost all kinds of foreign proteins while avoiding any unwanted destruction of cellular components. At present almost all protein-based drug formulations available in market are administered intravenously (IV) or subcutaneously (SC) with high dosing at frequent interval, eventually creating dose-fluctuation-related complications and reducing patient compliance vastly. Therefore, artificially increasing the therapeutic half-life of a protein by attaching to it a molecule that increases the overall size (eg, PEG) or helps with receptor mediated recycling (eg, albumin), or manipulating amino acid chain in a way that makes it more prone towards aggregate formation, are some of the revolutionary approaches to avoid the fast degradation in vivo. Half-life extension technologies that are capable of dramatically enhancing half-lives of proteins in circulation (2-100 folds) and thus improving their overall pharmacokinetic (PK) parameters have been successfully applied on a wide range of protein therapeutics from hormones and enzymes, growth factor, clotting factor to interferon. The focus of the review is to assess the technological advancements made so far in enhancing circulatory half-lives and improving therapeutic potency of proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2019.02.016DOI Listing

Publication Analysis

Top Keywords

peptide therapeutics
8
protein therapeutics
8
fast degradation
8
liver metabolism
8
protein
6
proteins
5
current strategies
4
strategies extending
4
half-lives
4
extending half-lives
4

Similar Publications

Although peptide vaccines offer a novel venue for cancer immunotherapy, clinical success has been rather limited. Cell-penetrating peptides, due to their ability to translocate through the cell membrane, could be conjugated to the peptide vaccine to2 enhance therapeutic efficiency. The S4 transduction domain of the shaker-potassium channel was conjugated to mammaglobin-A (MamA) immunodominant epitope (MamA2.

View Article and Find Full Text PDF

Acute liver failure (ALF) is characterized by rapid hepatic dysfunction, primarily caused by drug-induced hepatotoxicity. Due to the lack of satisfactory treatment options, ALF remains a fatal clinical disease, representing a grand challenge in global health. For the drug repositioning to ALF of mesalamine, which is clinically approved for the treatment of inflammatory bowel disease (IBD), we propose a supramolecular prodrug nanoassembly (SPNs).

View Article and Find Full Text PDF

Background: High prices and other access barriers have contributed to the rise of a market for compounded glucagon-like peptide-1 receptor agonists for weight loss in the United States. This market has not been systematically studied. We conducted a pilot study to assess the prevalence, characteristics, and advertising content of direct-to-consumer providers of compounded glucagon-like peptide-1 products for weight loss in Colorado.

View Article and Find Full Text PDF

Kisspeptin (KISS1) and its cognate receptor (KISS1R) are implicated in the progression of various cancers. A gallium-68 labelled kisspeptin-10 (KP10), the minimal biologically active structure, has potential as a pan-tumour radiopharmaceutical for the detection of cancers. Furthermore, a lutetium-177 labelled KP10 could find therapeutic application in treating oncological diseases.

View Article and Find Full Text PDF

Intranasal amyloid model of Alzheimer's disease - potential opportunities and challenges.

Pharmacol Rep

January 2025

Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli. Transit campus, Bijnour-sisendi road, Sarojini nagar, Lucknow, 226002, Uttar Pradesh, India.

Amyloid beta 1-42 (Aβ) peptide is one of the most studied disease-related amyloidogenic peptides implicated in the pathophysiology of Alzheimer's disease (AD). Despite significant scientific breakthroughs in the recent past, the existing non-transgenic animal models do not demonstrate accurate pathology of AD progression. This review has presented a concise mechanistic understanding of the intranasal amyloid-based animal model of AD, along with its advantages, challenges, and major limitations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!