Chemical dynamics simulations are performed to study the unimolecular dissociation of the benzene (Bz)-hexafluorobenzene (HFB) complex at five different temperatures ranging from 1000 to 2000 K, and the results are compared with that of the Bz dimer at common simulation temperatures. Bz-HFB, in comparison with Bz dimer, possesses a much attractive intermolecular interaction, a very different equilibrium geometry, and a lower average quantum vibrational excitation energy at a given temperature. Six low-frequency modes of Bz-HFB are formed by Bz + HFB association which are weakly coupled with the vibrational modes of Bz and HFB. However, this coupling is found much stronger in Bz-HFB compared to the same in the Bz dimer. The simulations are done with very good potential energy parameters taken from the literature. Considering the canonical (TST) model, the unimolecular dissociation rate constant at each temperature is calculated and fitted to the Arrhenius equation. An activation energy of 5.0 kcal/mol and a pre-exponential factor of 2.39 × 10 s are obtained, which are of expected magnitudes. The responsible vibrational mode for dissociation is identified by performing normal-mode analysis. Simulations with random excitations of high-frequency Bz and HFB modes and low-frequency inter-Bz-HFB vibrational modes of the Bz-HFB complex are also performed. The intramolecular vibrational energy redistribution (IVR) time and the unimolecular dissociation rate constants are calculated from these simulations. The latter shows good agreement with the same obtained from simulation with random excitation of all vibrational modes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.8b12188DOI Listing

Publication Analysis

Top Keywords

unimolecular dissociation
16
vibrational modes
12
comparison dimer
8
compared dimer
8
modes bz-hfb
8
simulations good
8
dissociation rate
8
vibrational
6
dissociation
5
modes
5

Similar Publications

Dually fluorinated unimolecular micelles for stable oxygen-carrying and enhanced photosensitive efficiency to boost photodynamic therapy against hypoxic tumors.

Acta Biomater

January 2025

State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Deign and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China. Electronic address:

Tumor hypoxia is one of key challenges in deep tumor photodynamic therapy (PDT), and how to fix this issue is attracting ongoing concerns worldwide. This work demonstrates dually fluorinated unimolecular micelles with desirable and stable oxygen-carrying capacity, high cellular penetration, and integrative type I & II PDT for deep hypoxic tumors. Dually fluorinated star copolymers with fluorinated phthalocyanines as the core are prepared through photoinitiated electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization under irradiation with NIR LED light at room temperature, followed by assembly into unimolecular micelles.

View Article and Find Full Text PDF

Association Kinetics for Perfluorinated -Alkyl Radicals.

J Phys Chem A

January 2025

Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.

Radical-radical reaction channels are important in the pyrolysis and oxidation chemistry of perfluoroalkyl substances (PFAS). In particular, unimolecular dissociation reactions within unbranched -perfluoroalkyl chains, and their corresponding reverse barrierless association reactions, are expected to be significant contributors to the gas-phase thermal decomposition of families of species such as perfluorinated carboxylic acids and perfluorinated sulfonic acids. Unfortunately, experimental data for these reactions are scarce and uncertain.

View Article and Find Full Text PDF

The Site of Protonation Affects the Dissociation of Protonated α- and β-Pinene Ions.

Rapid Commun Mass Spectrom

March 2025

Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada.

Rationale: In electrospray ionization and atmospheric pressure chemical ionization, the protonation site directly guides the ion's dissociation. But what if the site of protonation is ambiguous? In this study, we explored the unimolecular reactions of protonated α- and β-pinene ions with a combination of tandem mass spectrometry and theory. Each has multiple potential protonation sites that influence their chemistry.

View Article and Find Full Text PDF

In the search for alternative energy carriers that can replace conventional fossil fuels, sustainably produced oxygenated hydrocarbons represent a promising class of potential candidates. An illustrative member of this class of alternative biofuels are oxymethylene ethers (OMEs). This study makes a contribution to this objective by investigating hydroxy ethers, specifically methoxymethanol, ethoxymethanol, and 2-methoxyethanol.

View Article and Find Full Text PDF

The thermal unimolecular decay of ethoxy is important in high-temperature combustion environments where the ethoxy radical is a key reactive intermediate. Two dissociation pathways of ethoxy, including the β-C-C scission to yield CH + CHO and the H-elimination to make H + CHCHO, were characterized using a high-level coupled-cluster-based composite quantum chemical method (mHEAT-345(Q)). The former route is found to be dominant while the latter is insignificant, in agreement with previous experimental and theoretical studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!