Laser-induced graphene (LIG) has received much attention since it enables simple and rapid synthesis of porous graphene. This work presents a robust direct-write LIG-based gas sensor, which senses gases based on thermal conductivity, similar to a katharometer sensor. The gas sensors are fabricated by lasing polyimide substrates with a 10.6 μm CO laser to synthesize LIG. This enables the formation of flexible gas sensors which could be incorporated on a variety of surfaces. High surface area and thermal conductivity of the LIG results in rapid response times for all studied gases. The gas sensors are also embedded in cement to form a refractory composite material. These sensors are used to determine composition of various gas mixtures, such as N and CO, which are the most abundant gaseous species in flue gas. Thus, LIG based embeddable sensors could be incorporated in composites to enable electronically functional construction materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.8b09622DOI Listing

Publication Analysis

Top Keywords

gas sensors
16
laser-induced graphene
8
thermal conductivity
8
sensors incorporated
8
gas
7
sensors
6
graphene flexible
4
flexible embeddable
4
embeddable gas
4
sensors laser-induced
4

Similar Publications

Dual Oxygen-Responsive Control by RegSR of Nitric Oxide Reduction in the Soybean Endosymbiont .

Antioxid Redox Signal

January 2025

Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain.

To investigate the role of the RegSR-NifA regulatory cascade in the oxygen control of nitric oxide (NO) reduction in the soybean endosymbiont . We have performed an integrated study of expression and NO reductase activity in , , , , and mutants in response to microoxia (2% O) or anoxia. An activating role of RegR and NifA was observed under anoxia.

View Article and Find Full Text PDF

Nanogenerators for gas sensing applications.

Front Chem

January 2025

Center for Advanced Laser Technology, Hebei University of Technology, Tianjin, China.

Gas sensors are now widely employed in many industries due to the rapid speed of industrialization and the growth of the Internet of Things. However, the wearability and mobility of traditional gas sensors are limited by their high reliance on external power sources. Nanogenerators (NGs) can compensate for their power source limitations when paired with gas sensors by transforming the environment's widely dispersed low-frequency energy into electrical energy, allowing for self-powered gas detection.

View Article and Find Full Text PDF

Coal mining industry is one of the main source for economy of every nations, whereas safety in the underground coal mining area is still doubtful. According to some reports, there is heavy loss of life and money due to the occasional accidents in the coal mining area. Some existing researchers has been addressed this issue and approached their method.

View Article and Find Full Text PDF

Sensing of hazardous gases has an important role in ensuring safety in a variety of industries as well as environments. Mainly produced by the combustion of fossil fuels and other organic matter, ethanol is a dangerous gas that endangers human health and the environment. Stability and sensing sensitivity are major considerations when designing gas sensors.

View Article and Find Full Text PDF

Lead Phosphate Material for Exclusive Detection of Hydrogen Sulfide Gas.

ACS Sens

January 2025

School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China.

Efficient gas sensors that can accurately detect and identify hydrogen sulfide are essential for various practical applications. Conventional resistive sensors often lack the necessary selectivity, which hampers timely and effective HS detection. This study presents lead phosphate-based gas sensors specifically designed for HS detection, which effectively eliminate interference effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!