Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Central nervous system (CNS) inflammation occurs in cognitive dysfunctions, but the underlying mechanisms remain unclear. Here, we investigated the role of sirtuin 1 (SIRT1) and salidroside in CNS inflammation-induced cognitive deficits model. In vivo, CNS inflammation was initiated by a single intracerebroventricular injection of lipopolysaccharide (LPS). The levels of inflammatory cytokines and the capability of free radial scavenging were determined after the LPS challenge. In vivo, salidroside and nicotinamide, a SIRT1 inhibitor, were used in PC12 cell. Of note, with the treatment of salidroside, LPS-induced learning and memory impairments were effectively improved. Salidroside also remarkably inhibited the inflammatory cytokines, up-regulated the concentration of superoxide dismutase and inhibited the vitalities of malondialdehyde in serum, hippocampus, and cell supernatant. Besides, the expression of Sirt1, Nrf-2, HO-1, Bax, Bcl-2, caspase-9, and caspase-3 and the phosphorylation of AMPK, NF-κBp65, and IκBα were increased accompanying with the LPS-induced cognitive impairments, which were significantly suppressed by salidroside treatment. In PC12 cell model, nicotinamide significantly abrogated the beneficial effects of salidroside, as indicated by the antioxidant, anti-inflammatory, and antiapoptosis signaling. Together, our results showed that salidroside may be a novel therapy drug in neurodegenerative diseases, and the protective effect was involved in SIRT1-dependent Nrf-2/HO-1/NF-κB pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ptr.6335 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!