Combinations of healthcare claims data with additional datasets provide large and rich sources of information. The dimensionality and complexity of these combined datasets can be challenging to handle with standard statistical analyses. However, recent developments in artificial intelligence (AI) have led to algorithms and systems that are able to learn and extract complex patterns from such data. AI has already been applied successfully to such combined datasets, with applications such as improving the insurance claim processing pipeline and reducing estimation biases in retrospective studies. Nevertheless, there is still the potential to do much more. The identification of complex patterns within high dimensional datasets may find new predictors for early onset of diseases or lead to a more proactive offering of personalized preventive services. While there are potential risks and challenges associated with the use of AI, these are not insurmountable. As with the introduction of any innovation, it will be necessary to be thoughtful and responsible as we increasingly apply AI methods in healthcare.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s40273-019-00777-6DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
healthcare claims
8
claims data
8
combined datasets
8
complex patterns
8
combining power
4
power artificial
4
intelligence richness
4
richness healthcare
4
data opportunities
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!