Sinomenine Attenuates Cartilage Degeneration by Regulating miR-223-3p/NLRP3 Inflammasome Signaling.

Inflammation

Department of Orthopedic Surgery, Second Clinical College, Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, China.

Published: August 2019

Sinomenine (SIN) has been shown to protect against IL-1β-induced chondrocyte apoptosis in vitro. However, the role of SIN in the anterior cruciate ligament transection (ACLT)-induced osteoarthritis (OA) mouse model and its underlying molecular mechanisms remain unclear. In the present study, the protective effect of SIN on ACLT-induced articular cartilage degeneration and IL-1β-induced chondrocyte apoptosis miR-223-3p/NLRP3 signaling regulation was investigated. Safranin O staining was performed to evaluate the pathological changes of articular cartilage. Chondrocyte apoptosis was measured with Annexin V-fluorescein isothiocyanate/polyimide (annexin V-FITC/PI) staining using flow cytometry. Gene and protein expression were detected by RT-qPCR and Western blotting, respectively. SIN administration markedly improved articular cartilage degradation in mice undergoing ACLT surgery. In addition, SIN treatment downregulated the levels of inflammatory cytokines and the protein expression of NLRP3 inflammasome components and upregulated the expression of miR-223-3p in OA mice and IL-1β-stimulated chondrocytes. In vitro, we found that NLRP3 was a direct target of miR-223-3p, and overexpression of miR-223-3p blocked IL-1β-induced apoptosis and the inflammatory response in chondrocytes. These findings indicate that miR-223-3p/NLRP3 signaling could be used as a potential target of SIN for the treatment of OA.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10753-019-00986-3DOI Listing

Publication Analysis

Top Keywords

chondrocyte apoptosis
12
articular cartilage
12
cartilage degeneration
8
il-1β-induced chondrocyte
8
mir-223-3p/nlrp3 signaling
8
protein expression
8
sin treatment
8
sin
6
sinomenine attenuates
4
cartilage
4

Similar Publications

FGFR antagonists restore defective mandibular bone repair in a mouse model of osteochondrodysplasia.

Bone Res

January 2025

Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Paris, France.

Gain-of-function mutations in fibroblast growth factor receptor (FGFR) genes lead to chondrodysplasia and craniosynostoses. FGFR signaling has a key role in the formation and repair of the craniofacial skeleton. Here, we analyzed the impact of Fgfr2- and Fgfr3-activating mutations on mandibular bone formation and endochondral bone repair after non-stabilized mandibular fractures in mouse models of Crouzon syndrome (Crz) and hypochondroplasia (Hch).

View Article and Find Full Text PDF

Background: Osteoarthritis (OA) is one of the most common bone disorders and has a serious impact on the quality of life of patients. LncRNA-HCP5 (HCP5) is downregulated in OA tissues. However, the latent function and regulatory mechanisms of HCP5 in OA are unclear.

View Article and Find Full Text PDF

Background: The molecular of intervertebral disc degeneration (IVDD) is still unclear. When it comes to treating decoction, traditional Chinese medicine is effective. In particular, the Duhuo (Radix Angelicae Biseratae) may be particularly helpful.

View Article and Find Full Text PDF

Introduction: Osteoarthritis (OA) is a degenerative joint disease characterized by articular cartilage degeneration. Chondrocyte inflammation, apoptosis, and extracellular matrix degradation accelerated OA progression. MicroRNA (miRNA) has the potential to be a therapeutic method for osteoarthritis.

View Article and Find Full Text PDF

Studies have demonstrated that several lncRNAs exhibit abnormal expression levels in patients suffering from osteoarthritis, and in-depth investigation of these aberrantly expressed lncRNAs may pave the way for innovative therapeutic strategies targeting OA. The aim of this study was to examine the expression of glucuronidase beta pseudogene 11 (GUSBP11) in OA patients and to elucidate its potential molecular mechanism. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to detect GUSBP11 levels on cartilage tissues and serum samples obtained from OA patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!