Heat and chilling stress induce nucleolus morphological changes.

J Plant Res

Department of Applied Biological Science Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.

Published: May 2019

The nucleolus, where components of the ribosome are constructed, is known to play an important role in various stress responses in animals. However, little is known about the role of the plant nucleolus under environmental stresses such as heat and chilling stress. In this study, we analyzed nucleolus morphology by determining the distribution of newly synthesized rRNAs with an analog of uridine, 5-ethynyl uridine (EU). When EU was incorporated into the root of the Arabidopsis thaliana, EU signals were strongly localized in the nucleolus. The results of the short-term incorporation of EU implied that there is no compartmentation among the processes of transcription, processing, and construction of rRNAs. Nevertheless, under heat and chilling stress, EU was not incorporated into the center of the nucleolus. Morphological analyses using whole rRNA staining and differential interference contrast observations revealed speckled and round structures in the center of the nucleolus under heat and chilling stress, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7198650PMC
http://dx.doi.org/10.1007/s10265-019-01096-9DOI Listing

Publication Analysis

Top Keywords

heat chilling
16
chilling stress
16
nucleolus morphological
8
center nucleolus
8
nucleolus
7
stress
5
heat
4
stress induce
4
induce nucleolus
4
morphological changes
4

Similar Publications

Continuous supply of NADPH is necessary for the synthesis of ROS, which can be derived from the decarboxylation of malic acid, providing fuels for RbOHs to sustain ROS production. However, excessive accumulations of ROS lead to significant chilling injury (CI) in peaches during cold storage. Our previous studies indicated that hot air (HA) slows the CI progression in peaches by preventing malate degradation.

View Article and Find Full Text PDF

Tolerance to multiple abiotic stresses is mediated by interacting CNGC proteins that regulate Ca influx and stomatal movement in rice.

J Integr Plant Biol

January 2025

State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.

Members of the cyclic nucleotide-gated channel (CNGC) proteins are reportedly involved in a variety of biotic and abiotic responses and stomatal movement. However, it is unknown if and how a single member could regulate multiple responses. Here we characterized three closely related CNGC genes in rice, OsCNGC14, OsCNGC15 and OsCNGC16, to determine whether they function in multiple abiotic stresses.

View Article and Find Full Text PDF

Our study aims to assess the thermal inactivation of non-proteolytic type B spores in a plant-based fish and to evaluate the potential of alternative heat treatments at temperatures below the safe harbor guidelines established for vacuum-packed chilled products of extended durability. First, the heat resistance of the spore suspension was determined using capillary tubes in potassium phosphate buffer at 80°C. The D value was estimated to be 0.

View Article and Find Full Text PDF

Bud dormancy is a vital physiological process in woody perennials, facilitating their adaptation to seasonal environmental changes. Satisfying genotype-specific chilling requirements (CR) and heat requirements (HR) through exposure to specific chilling and warm temperatures is essential for dormancy release and the subsequent resumption of growth. The genetic mechanisms regulating bud dormancy traits in Prunus mume remain unclear.

View Article and Find Full Text PDF

Characterization of ZAT12 protein from Prunus persica: role in fruit chilling injury tolerance and identification of gene targets.

Planta

December 2024

Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.

PpZAT12, a transcription factor differentially expressed in peach varieties with distinct susceptibility tochilling injury (CI), is a potential candidate gene for CI tolerance by regulating several identified gene targets. ZAT (zinc finger of Arabidopsis thaliana) proteins play roles in multiple abiotic stress tolerance in Arabidopsis and other species; however, there are few reports on these transcription factors (TFs) in fruit crops. This study aimed to evaluate PpZAT12, a C2H2 TF up-regulated in peach fruit by a heat treatment applied before postharvest cold storage for reducing chilling injury (CI) symptoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!