Objective: It is known that the insertion of the intracochlear electrode is critical procedure because the damage around cochlear structures can deteriorate hearing restoration. To reduce the trauma during the electrode insertion surgery, we developed a thin and flexible intracochlear electrode array constructed with carbon nanotube (CNT) bundles.
Methods: Each CNT bundle was used for an individual electrode channel after coated with parylene C for insulation. By encapsulating eight CNT bundles with silicone elastomer, an 8-channel intracochlear electrode array was fabricated. The mechanical and electrochemical characteristics were assessed to evaluate the flexibility and feasibility of the electrode as a stimulation electrode. The functionality of the electrode was confirmed by electrically evoked auditory brainstem responses (eABR) recorded from a rat.
Results: The proposed electrode has a thickness of 135 μm at the apex and 395 μm at the base. It was demonstrated that the CNT bundle-based electrodes require 6-fold the lower insertion force than metal wire-based electrodes. The electrode impedance and the cathodic charge storage capacitance (CSCc) were 2.70 kΩ ∠-20.4° at 1 kHz and - 708 mC/cm, respectively. The eABR waves III and V were observed when stimulation current is greater than 50 μA.
Conclusion: A thin and flexible CNT bundle-based intracochlear electrode array was successfully developed. The feasibility of the proposed electrode was shown in terms of mechanical and electrochemical characteristics. A proposed CNT bundle-based intracochlear electrode may reduce the risk of trauma during electrode insertion surgery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10544-019-0384-y | DOI Listing |
Adv Sci (Weinh)
January 2025
ENT Institute and Department of Otolaryngology, Eye & ENT Hospital of Fudan University, Shanghai, 200031, China.
Tinnitus, a widespread condition affecting numerous individuals worldwide, remains a significant challenge due to limited effective therapeutic interventions. Intriguingly, patients using cochlear implants (CIs) have reported significant relief from tinnitus symptoms, although the underlying mechanisms remain unclear and intracochlear implantation risks cochlear damage and hearing loss. This study demonstrates that targeted intracochlear electrical stimulation (ES) in guinea pigs with noise-induced hearing loss reversed tinnitus-related maladaptive plasticity in the cochlear nucleus (CN), characterized by reduced auditory innervation, increased somatosensory innervation, and diminished inhibitory neural networks.
View Article and Find Full Text PDFOtol Neurotol
February 2025
Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota.
Objective: To analyze the use of electrical field imaging (EFI) in the detection of extracochlear electrodes in cochlear implants (CI).
Study Design: Retrospective cohort study.
Setting: Tertiary academic medical center.
J Assoc Res Otolaryngol
January 2025
The Bionics Institute, 384-388 Albert St, East Melbourne, VIC, 3002, Australia.
Purpose: Variations in neural survival along the cochlear implant electrode array leads to off-place listening, resulting in poorer speech understanding outcomes for recipients. Therefore, it is important to develop and compare clinically viable tests to identify these patient-specific intra-cochlear neural differences.
Methods: Nineteen experienced cochlear implant recipients (9 males and 10 females) were recruited for this study.
Laryngoscope
December 2024
Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, U.S.A.
Clin Exp Otorhinolaryngol
December 2024
King Abdullah Ear Specialist Center (KAESC), King Saud Medical City, King Saud University, Riyadh 11411, Saudi Arabia.
Objectives: This experimental study compares the precision and surgical outcomes of manual versus robotic electrode insertions in cochlear implantation.
Methods: Conducted on formalin-fixed cadaveric heads, the study involved nine senior neurotologists performing both manual and robotic insertions.
Results: The results showed no statistically significant difference between the two methods in insertion angle, cochlear coverage, or electrode coverage.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!