Cellulose is the biosynthetic product from plants, animals and bacteria. Cellulose is the most abundant polymer having long linear chain like structure composed of (1,4) linked β-D glucopyranosyl units assembled into hierarchical structures of microfibrils with excellent strength and stiffness. And 'nanocellulose' refers to the cellulosic materials with defined nano-scale structural dimensions. They may be cellulose nanocrystal (CNC or NCC), cellulose nanofibers (CNF) or bacterial nanocellulose. Nanocellulose is non-toxic, biodegradable and biocompatible with no adverse effects on health and environment. Due to its low thermal expansion coefficient, high aspect ratio, better tensile strength, good mechanical and optical properties, they find many applications in thermo-reversible and tenable hydrogels, paper making, coating additives, food packaging, flexible screens, optically transparent films and light weight materials for ballistic protection, automobile windows. It also find potential in biopharmaceutical applications such as in drug delivery and for fabricating temporary implants with PHB like sutures, stents etc.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6389799PMC
http://dx.doi.org/10.1016/j.btre.2019.e00316DOI Listing

Publication Analysis

Top Keywords

cellulose
5
commercial application
4
application cellulose
4
cellulose nano-composites
4
nano-composites review
4
review cellulose
4
cellulose biosynthetic
4
biosynthetic product
4
product plants
4
plants animals
4

Similar Publications

Metabolic enhancement contributed by horizontal gene transfer is essential for dietary specialization in leaf beetles.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.

Horizontal gene transfer (HGT) from bacteria to insects is widely reported and often associated with the adaptation and diversification of insects. However, compelling evidence demonstrating how HGT-conferred metabolic adjustments enable species to adapt to surrounding environment remains scarce. Dietary specialization is an important ecological strategy adopted by animals to reduce inter- and intraspecific competition for limited resources.

View Article and Find Full Text PDF

In Situ Balanced Synthesis of High-Activity Low-Spin Iron Cathode Prussian Blue for Enhanced Sodium-Ion Storage.

Nano Lett

January 2025

Key Laboratory of Advanced Structural Materials, Ministry of Education, and School of Materials Science and Engineering, Changchun University of Technology, Changchun 130012, China.

The growing market for sodium-ion batteries has stimulated interest in research on Prussian blue-type cathode materials. Iron hexacyanoferrate (FeHCF) is considered a desirable Prussian blue-type cathode, but the incomplete electrochemical property of its low-spin iron sites hinders its further practical application. In this paper, carboxymethyl cellulose is demonstrated to have an appropriate binding energy through DFT calculations, synthesize Prussian blue in situ, balance Fe and water in FeHCF, and introduce Fe vacancies to activate low-spin Fe sites.

View Article and Find Full Text PDF

Mercury contamination of the environment is extremely hazardous to human health because of its significant toxicity, especially in water. Biomass-derived fluorophores such as carbon dots (CDs) have emerged as eco-friendly and cost-effective alternative sensors that provide comparable efficacy while mitigating the environmental and economic drawbacks of conventional methods. In this work, we report the fabrication of a selective fluorescence-enhancing sensor based on sulfur-doped carbon dots (SCDs) using waste bamboo-derived cellulose and sodium thiosulfate as the soft base dopant, which actively complexes with mercury ions for detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!