Birds should select nest sites that minimize predation risk, but understanding the influence of vegetation on nest survival has proven problematic. Specifically, the common practice of measuring vegetation on nest fate date can overestimate its effect on nest survival, simply because vegetation at hatched nests grows for a longer period of time than vegetation at nests that were depredated. Here, we sampled the literature to determine the prevalence of this bias in studies of duck breeding ecology. We then used survival data collected from ~2,800 duck nests to empirically evaluate evidence of bias in four different vegetation metrics: vegetation density measured when the nest was found, density when the nest was fated, and date-corrected regression residuals of these two. We also diagnosed the magnitude of vegetation effects on nest survival by restricting our analysis to only nests which were fated contemporaneously (thereby removing potential bias in the timing of measurement). Finally, we examined whether systematic phenological differences exist between vegetation at hatched and depredated nests that have the potential to further obfuscate the relationship between vegetation and nest survival. We found evidence for a true-positive effect of vegetation density on nest survival that appeared to be inflated when using raw vegetation measurements collected at fate date. However, taken in combination with the literature review, our results suggest that the majority of duck nesting studies have evaluated the role of vegetation on nest survival using a relatively less biased metric-vegetation density when the nest was found. Finally, we found that over the course of a nesting attempt, vegetation increased in density at successful nests, but decreased in density at depredated nests. As a consequence, duck researchers using vegetation data collected when the nest was found may actually be underestimating the magnitude of the effect. This seasonal change potentially points to an important new metric for understanding predation risk, but further experimental research is required to fully eliminate potential biases in the timing of vegetation measurements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6392373 | PMC |
http://dx.doi.org/10.1002/ece3.4906 | DOI Listing |
Epilepsia
January 2025
Atalanta Therapeutics, Boston, Massachusetts, USA.
Objective: Gain-of-function variants in the KCNT1 gene, which encodes a sodium-activated potassium ion channel, drive severe early onset developmental epileptic encephalopathies including epilepsy of infancy with migrating focal seizures and sleep-related hypermotor epilepsy. No therapy provides more than sporadic or incremental improvement. Here, we report suppression of seizures in a genetic mouse model of KCNT1 epilepsy by reducing Kcnt1 transcript with divalent small interfering RNA (siRNA), an emerging variant of oligonucleotide technology developed for the central nervous system.
View Article and Find Full Text PDFSci Rep
January 2025
Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China.
Artificial fish nests are common tools in fisheries management, providing spawning grounds to enhance the size and diversity of fish populations. This study aimed to explore the effects of deployment locations on the reproductive efficiency and preferences of fish with adhesive and demersal eggs using artificial nests. Floating artificial nests were deployed in three regions (upstream, midstream, and downstream) of a reservoir in Zhejiang, China, at locations with three topographical types: steep slope (reservoir shore, slopes > 60°), gentle slope (reservoir shore, slopes < 30°), and confluence (middle thread of channel).
View Article and Find Full Text PDFEcology
January 2025
Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada.
Optimal nest site selection is crucial in animals whose offspring are completely dependent on the shelter of a nest. Parental decisions influencing nest thermal conditions are particularly important because temperature strongly influences juvenile activity, metabolism, growth, developmental rate, survival, and adult body size. In small ectotherms such as bees, maternal decisions to nest in sun-exposed or shady sites can lead to marked differences in thermal microenvironments inside nests.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Ph.D. Program in Medical Neuroscience, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan; International Master Program in Medical Neuroscience, Taipei Medical University, New Taipei City 23564, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 11031, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80780, Taiwan. Electronic address:
Traumatic brain injury (TBI) constitutes a significant burden on global healthcare systems, especially affecting younger populations, where it is a leading cause of disability and mortality. Current treatments for TBI mainly focus on preventing further brain damage and controlling symptoms. However, despite these approaches, several clinical needs remain unmet.
View Article and Find Full Text PDFEcol Evol
January 2025
Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences Hainan Normal University Haikou China.
The green sea turtle () is the only sea turtle species that breeds in China, and the largest remaining nesting grounds for green sea turtles in Chinese waters is found on the Qilianyu atoll of the Xisha Islands. Nesting site selection is particularly important for egg survival, and understanding the microhabitat characteristics of green sea turtle nesting sites is crucial for delineating priority conservation areas for nesting grounds. In this study, we aimed to examine the role of several microhabitat ecological factors in the selection of nesting sites and the success of nesting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!