Crayfish can be used as model organisms in phylogeographic and divergence time studies if reliable calibrations are available. This study presents a comprehensive investigation into the phylogeography of the European stone crayfish () and includes samples from previously unstudied sites. Two mitochondrial markers were used to reveal evolutionary relationships among haplogroups throughout the species' distributional range and to estimate the divergence time by employing both substitution rates and geological calibration methods. Our haplotype network reconstruction and phylogenetic analyses revealed the existence of a previously unknown haplogroup distributed in Romania's Apuseni Mountains. This haplogroup is closely related to others that are endemic in the Dinarides, despite their vast geographical separation (~600 km). The separation is best explained by the well-dated tectonic displacement of the Tisza-Dacia microplate, which started in the Miocene (~16 Ma) and possibly carried part of the population to the current location of the Apuseni Mountains. This population may thus have been isolated from the Dinarides for a period of ca. 11 m.y. by marine and lacustrine phases of the Pannonian Basin. The inclusion of this geological event as a calibration point in divergence time analyses challenges currently accepted crayfish evolutionary time frames for the region, constraining the evolution of this area's crayfish to a much earlier date. We discuss why molecular clock calibrations previously employed to date European crayfish species divergences should therefore be reconsidered.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6392496PMC
http://dx.doi.org/10.1002/ece3.4888DOI Listing

Publication Analysis

Top Keywords

divergence time
12
european crayfish
8
apuseni mountains
8
crayfish
6
journey plate
4
plate tectonics
4
tectonics sheds
4
sheds light
4
light european
4
crayfish phylogeography
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!