The RNA interference (RNAi) pathway regulates mRNA stability and translation in nearly all human cells. Small double-stranded RNA molecules can efficiently trigger RNAi silencing of specific genes, but their therapeutic use has faced numerous challenges involving safety and potency. However, August 2018 marked a new era for the field, with the US Food and Drug Administration approving patisiran, the first RNAi-based drug. In this Review, we discuss key advances in the design and development of RNAi drugs leading up to this landmark achievement, the state of the current clinical pipeline and prospects for future advances, including novel RNAi pathway agents utilizing mechanisms beyond post-translational RNAi silencing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41573-019-0017-4 | DOI Listing |
Biomol NMR Assign
January 2025
CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India.
In Arabidopsis thaliana, micro-RNA regulation is primarily controlled by DCL1, an RNase III enzyme, and its associated proteins. DCL1, together with DRB2, governs a specific group of miRNAs that induce the inhibition of target mRNA translation. DRB2 is a multi-domain protein containing two N-terminal dsRNA binding domains (dsRBD) separated by a linker, followed by an unstructured C-terminal tail.
View Article and Find Full Text PDFPLoS Biol
January 2025
Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America.
RNA interference (RNAi) mediates antiviral defense in many eukaryotes. Caenorhabditis elegans mutants that disable RNAi are more sensitive to viral infection. Many mutants that enhance RNAi have also been identified; these mutations may reveal genes that are normally down-regulated in antiviral defense.
View Article and Find Full Text PDFMol Biol Cell
January 2025
Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322.
Rare inherited diseases caused by mutations in the copper transporters (CTR1) or induce copper deficiency in the brain, causing seizures and neurodegeneration in infancy through poorly understood mechanisms. Here, we used multiple model systems to characterize the molecular mechanisms by which neuronal cells respond to copper deficiency. Targeted deletion of CTR1 in neuroblastoma cells produced copper deficiency that produced a metabolic shift favoring glycolysis over oxidative phosphorylation.
View Article and Find Full Text PDFmBio
January 2025
Department of Integrative Biology, University of California, Berkeley, Berkeley, California, USA.
The composition of the gut microbiome is determined by a complex interplay of diet, host genetics, microbe-microbe interactions, abiotic factors, and stochasticity. Previous studies have demonstrated the importance of host genetics in community assembly of the gut microbiome and identified a central role for DBL-1/BMP immune signaling in determining the abundance of gut . However, the effects of DBL-1 signaling on gut bacteria were found to depend on its activation in extra-intestinal tissues, highlighting a gap in our understanding of the proximal factors that determine microbiome composition.
View Article and Find Full Text PDFFront Plant Sci
January 2025
National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University/Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing, China.
Introduction: Citrus tristeza virus (CTV) is a threat to the citrus production and causes severe economic losses to the citrus industry. Ethylene response factors (ERFs) play important roles in plant growth and stress responses. Although ERF genes have been widely studied in model plants, little is known about their role in biological stress responses in fruit trees, such as citrus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!