Borrelia miyamotoi is a relapsing fever spirochete transmitted by ticks in the Ixodes ricinus complex. In the eastern United States, B. miyamotoi is transmitted by I. scapularis, which also vectors several other pathogens including B. burgdorferi sensu stricto. In contrast to Lyme borreliae, B. miyamotoi can be transmitted vertically from infected female ticks to their progeny. Therefore, in addition to nymphs and adults, larvae can vector B. miyamotoi to wildlife and human hosts. Two widely varying filial infection prevalence (FIP) estimates - 6% and 73% - have been reported previously from two vertically infected larval clutches; to our knowledge, no other estimates of FIP or transovarial transmission (TOT) rates for B. miyamotoi have been described in the literature. Thus, we investigated TOT and FIP of larval clutches derived from engorged females collected from hunter-harvested white-tailed deer in 2015 (n = 664) and 2016 (n = 599) from Maine, New Hampshire, Tennessee, and Wisconsin. After engorged females oviposited in the lab, they (n = 492) were tested for B. miyamotoi infection by PCR. Subsequently, from each clutch produced by an infected female, larval pools, as well as 100 individual eggs or larvae, were tested. The TOT rate of the 11 infected females was 90.9% (95% CI; 57.1-99.5%) and the mean FIP of the resulting larval clutches was 84.4% (95% CI; 68.1-100%). Even though the overall observed vertical transmission rate (the product of TOT and FIP; 76.7%, 95% CI; 44.6-93.3%) was high, additional horizontal transmission may be required for enzootic maintenance of B. miyamotoi based on the results of a previously published deterministic model. Further investigation of TOT and FIP variability and the underlying mechanisms, both in nature and the laboratory, will be needed to resolve this question. Meanwhile, studies quantifying the acarological risk of Borrelia miyamotoi disease need to consider not only nymphs and adults, but larval I. scapularis as well.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6551370 | PMC |
http://dx.doi.org/10.1016/j.ttbdis.2019.02.014 | DOI Listing |
Neoreviews
January 2025
Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, Massachusetts.
Borrelia miyamotoi disease (BMD), also known as hard-tick relapsing fever, is an emerging tick-borne illness caused by the bacterium Borrelia miyamotoi. This pathogen is transmitted primarily by Ixodes ticks, also known as deer ticks or black-legged ticks. BMD poses significant public health concerns because of its potential to cause severe hemodynamic and hematologic disturbances, particularly in vulnerable populations such as pregnant individuals.
View Article and Find Full Text PDFParasit Vectors
December 2024
Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 61242, Brno, Czech Republic.
Background: Borrelia miyamotoi and Borrelia burgdorferi sensu lato (s.l.) are important zoonotic agents transmitted by Ixodes ricinus ticks, which are widely distributed across Central Europe.
View Article and Find Full Text PDFExp Appl Acarol
December 2024
Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland.
Ixodes ricinus tick is a vector of bacteria of Borreliella genus and Borrelia miyamotoi. Exposure to ticks constitutes occupational risk to soldiers, but the current knowledge on this subject is still limited. Therefore, the aim of this study was to evaluate tick abundance and prevalence of infection with Borreliella spp.
View Article and Find Full Text PDFBMC Vet Res
December 2024
Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, 94700, France.
Ticks Tick Borne Dis
November 2024
Amsterdam UMC Multidisciplinary Lyme Borreliosis Center, Amsterdam UMC, Amsterdam, the Netherlands; Center for Experimental and Molecular Medicine, Amsterdam UMC, Amsterdam, the Netherlands; Amsterdam Institute for Immunology & Infectious diseases, Amsterdam UMC, Amsterdam, the Netherlands. Electronic address:
Ixodes ricinus is the main vector of the causative agents of Lyme neuroborreliosis. This tick species can also transmit tick-borne encephalitis virus (TBEV), spotted fever group (SFG) Rickettsia and Borrelia miyamotoi to humans. These tick-borne pathogens are present in Dutch ticks and have also been associated with human neurological infections, but well characterized disease cases are seldom reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!