Janus kinases (JAKs) regulate various cancers and immune responses and are targets for the treatment of cancers and immune diseases. A new series of 1H-pyrazolo[3,4-d]pyrimidin-4-amino derivatives were synthesized and optimized by introducing a functional 3,5-disubstituted-1H-pyrazole moiety into the C-3 moiety of pyrazole template, and then were biologically evaluated as potent Janus kinase 2 (JAK2) inhibitors. Among these molecules, inhibitors 11f, 11g, 11h and 11k displayed strong activity and selectivity against the JAK2 kinase, with IC values of 7.2 nM, 6.5 nM, 8.0 nM and 9.7 nM, respectively. In particular, the cellular inhibitory assay and western blot analysis further support the JAK2 selectivity of compound 11g also in cells. Furthermore, compound 11g also exhibited potent inhibitory activity in lymphocytes proliferation assay and delayed hypersensitivity assay. Taken together, the novel JAK2 selective inhibitors discovered in this study may be potential lead compounds for new drug discovery via further development of more potent and selective JAK2 inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2019.02.054DOI Listing

Publication Analysis

Top Keywords

jak2 inhibitors
12
janus kinase
8
kinase jak2
8
cancers immune
8
compound 11g
8
jak2
6
inhibitors
5
discovery novel
4
novel selective
4
selective janus
4

Similar Publications

BCR::ABL1-negative myelo-proliferative neoplasms (MPNs) are characterized by mutations in JAK2, CALR, or MPL. Usually these mutations are co-exclusive of each other and of BCR::ABL1. We reviewed clonal interactions in 177 subjects with mutations in JAK2, CALR, or MPL and BCR::ABL1 including JAK2/BCR::ABL1 (N = 142), CALR/BCR::ABL1 (N = 31), MPL/BCR::ABL1 (N = 3).

View Article and Find Full Text PDF

SBL-JP-0004: A promising dual inhibitor of JAK2 and PI3KCD against gastric cancer.

Oncol Res

December 2024

Department of Pathology, College of Medicine, King Khalid University, Abha, 62521, Saudi Arabia.

Background: Gastric cancer (GC) remains a global health burden and is often characterized by heterogeneous molecular profiles and resistance to conventional therapies. The phosphoinositide 3-kinase and PI3K and Janus kinase (JAK) signal transducer and activator of transcription (JAK-STAT) pathways play pivotal roles in GC progression, making them attractive targets for therapeutic interventions.

Methods: This study applied a computational and molecular dynamics simulation approach to identify and characterize SBL-JP-0004 as a potential dual inhibitor of JAK2 and PI3KCD kinases.

View Article and Find Full Text PDF

Modulation of IL-6 receptor/STAT3 downstream signaling in rheumatoid arthritis patients.

Exp Mol Pathol

December 2024

Rheumatology Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari, Bari, Italy.

Interleukin-6 (IL-6) is a relevant cytokine in rheumatoid arthritis (RA) pathogenesis, potentially activating Janus kinases (JAK)-1, -2, and tyrosine kinase 2 (TYK2), and thus, three signal transducer and activator of transcription (STAT)-1, -3 or - 5 pathways. This pilot study aims to explore differences in phosphorylated (p)STAT3 levels among patients with RA, those not classified as RA (nRA), and healthy donors (HD), providing some clues on the relative contribution of each JAK protein to the downstream of the IL-6-induced STAT3 pathway. Clinical data and blood samples from 80 subjects (41 RA, 14 nRA, and 25 HD) were collected.

View Article and Find Full Text PDF

Cord blood T regulatory cells synergize with ruxolitinib to improve GVHD outcomes.

Front Transplant

December 2024

Department of Microbial Pathogenesis & Immunology, Texas A&M University, Bryan, TX, United States.

Background: Adoptive therapy with umbilical cord blood (UCB) T-regulatory (Treg) cells can prevent graft vs. host disease (GVHD). We hypothesize that UCB Tregs can treat GVHD and synergize with ruxolitinib, Jak2 inhibitor, to improve outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!