A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Application of the OPTICS Algorithm to Cluster Analysis in Atom Probe Tomography Data. | LitMetric

The Application of the OPTICS Algorithm to Cluster Analysis in Atom Probe Tomography Data.

Microsc Microanal

Pacific Northwest National Laboratory,Energy and Environment Directorate,Richland,WA, 99354,USA.

Published: April 2019

Atom probe tomography (APT) is a powerful technique to characterize buried three-dimensional nanostructures in a variety of materials. Accurate characterization of those nanometer-scale clusters and precipitates is of great scientific significance to understand the structure-property relationships and the microstructural evolution. The current widely used cluster analysis method, a variant of the density-based spatial clustering of applications with noise algorithm, can only accurately extract clusters of the same atomic density, neglecting several experimental realities, such as density variations within and between clusters and the nonuniformity of the atomic density in the APT reconstruction itself (e.g., crystallographic poles and other field evaporation artifacts). This clustering method relies heavily on multiple input parameters, but ideal selection of those parameters is challenging and oftentimes ambiguous. In this study, we utilize a well-known cluster analysis algorithm, called ordering points to identify the clustering structures, and an automatic cluster extraction algorithm to analyze clusters of varying atomic density in APT data. This approach requires only one free parameter, and other inputs can be estimated or bounded based on physical parameters, such as the lattice parameter and solute concentration. The effectiveness of this method is demonstrated by application to several small-scale model datasets and a real APT dataset obtained from an oxide-dispersion strengthened ferritic alloy specimen.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S1431927618015386DOI Listing

Publication Analysis

Top Keywords

cluster analysis
12
atomic density
12
atom probe
8
probe tomography
8
density apt
8
application optics
4
algorithm
4
optics algorithm
4
cluster
4
algorithm cluster
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!