Agriculture plays an important role for many countries. It provides raw materials for foodand provides large employment opportunities for people in the country, especially for countrieswith a dense population. To enhance agriculture productivity, modern technology such as wirelesssensor networks (WSNs) can be utilized to help in monitoring important parameters in thwagricultural field such as temperature, light, soil moisture, etc. During the monitoring process, ifsecurity compromises happen, such as interception or modification of the parameters, it may leadto false decisions and bring damage to agriculture productivity. Therefore, it is very important todevelop secure authentication and key agreement for the system. Recently, Ali et al. proposed anauthentication and key agreement scheme using WSNs for agriculture monitoring. However, it failsto provide user untraceability, user anonymity, and session key security; it suffers from sensor nodeimpersonation attack and perfect forward secrecy attack; and even worse has denial of service as aservice. This study discusses these limitations and proposes a new secure and more efficientauthentication and key agreement scheme for agriculture monitoring using WSNs. The proposedscheme utilizes dynamic pseudonym identity to guarantee user privacy and eliminates redundantcomputations to enhance efficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427367PMC
http://dx.doi.org/10.3390/s19051146DOI Listing

Publication Analysis

Top Keywords

key agreement
12
authentication key
8
agriculture productivity
8
agreement scheme
8
agriculture monitoring
8
key
5
monitoring
5
agriculture
5
enhanced lightweight
4
lightweight dynamic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!