Molecular tools were used to analyze the genetic diversity and population structure of Xanthomonas oryzae pv. oryzicola, the bacterial leaf streak pathogen of rice in the Philippines. Representative pathogen strains were selected and used to assess resistance in rice germplasm. A partial genomic library of X. oryzae pv. oryzicola was constructed, and a 459-bp clone containing the repetitive DNA element R41 was selected as a probe for restriction fragment length polymorphism (RFLP) analysis and sequenced. R41 shared 44% sequence homology with the putative transposase gene of IS1112, an insertion element cloned from X. oryzae pv. oryzae. Using R41 as a probe for RFLP analysis, 26 band profiles were discerned in a collection of 123 strains of X. oryzae pv. oryzicola. Analysis of PstI digestion patterns of DNA from the same collection resolved 36 haplotypes. Several clusters of strains were detected after grouping of data based on either pR41 as a probe or Pst1 digestion patterns. However, based on bootstrap analysis, the clusters were not robust. Genetic diversity was high for the entire collection as well as within spatially and temporally defined subsets of strains. Even a set of strains collected from a single site at a single time was highly diverse. Strains representing the different DNA types were inoculated to a set of diverserice cultivars. Consistent rice varietal groupings were obtained from disease reaction data, but there was no correlation between pathogen isolate cluster and host reaction across inoculation trials. Isozyme group I of rice, representing tropical japonica and javanica germplasm, is a promising source of resistance to bacterial leaf streak.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS.1999.83.5.434 | DOI Listing |
Mol Plant
January 2025
State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China. Electronic address:
Hydrogen sulfide (H2S) is recognized as an important gaseous signaling molecule, similar to nitric oxide and carbon monoxide. However, the synthesis mechanism of H2S and its role in enhancing rice resistance to Xanthomonas oryzae pv. oryzicola (Xoc) and Xanthomonas oryzae pv.
View Article and Find Full Text PDFPest Manag Sci
January 2025
School of Life Science, Anhui Agricultural University, Hefei, China.
Background: Previously, eight new alkaloids were obtained from the fermentation extract of termite-associated Streptomyces tanashiensis BYF-112. However, genome analysis indicated the presence of many undiscovered secondary metabolites in S. tanashiensis BYF-112.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
To develop antibacterial agents with a novel mechanism of action, a series of sulfone compounds containing a 1,2,4-triazolo[4,3-]pyridine were designed and synthesized by progressive molecular structure optimization. The antibacterial activities of some derivatives against the four plant pathogens (), (), (), and () were evaluated. Among them, compound demonstrated significant antibacterial activities against , , and , with EC values of 1.
View Article and Find Full Text PDFPestic Biochem Physiol
December 2024
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Minutesistry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Huaxi District, Guiyang 550025, China. Electronic address:
The rise of plant bacterial pathogens poses a significant threat to the yield and quality of essential food crops and cash crops globally. Our research introduced a versatile cationic AIE fluorescent probe for detecting and eliminating plant bacteria. With its unique aggregation-induced emission property, TBPD-6C can effectively detect plant bacteria by causing a fluorescence quenching effect and enables bacterial imaging under green fluorescence channels.
View Article and Find Full Text PDFPest Manag Sci
November 2024
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China.
Background: Bacterial diseases in plants pose a serious threat to crop production, leading to substantial food loss every year. Prolonged and repeated use of a single antibacterial agent can promote resistance in pathogenic bacteria. Therefore, there is an urgent need to develop efficient antibacterial agents for the treatment of bacterial diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!