Cationic polyacrylamide, a flocculation powder widely used in wastewater pretreatment and sludge dewatering, was highly accumulated in waste activated sludge. However, its effect on short-chain fatty acids (SCFAs) accumulation from anaerobic fermentation of waste activated sludge has not been investigated. This work therefore aims to deeply unveil how cationic polyacrylamide affects SCFAs production, through both long-term and batch tests using either real waste activated sludge or synthetic wastewaters as fermentation substrates. Experimental results showed that the presence of cationic polyacrylamide not only significantly decreased the accumulation of SCFAs but also affected the composition of individual SCFA. The concentration of SCFAs decreased from 3374.7 to 2391.7 mg COD/L with cationic polyacrylamide level increasing from 0 to 12 g/kg of total suspended solids, whereas the corresponding percentage of acetic acid increased from 45.2% to 55.5%. The mechanism studies revealed that although cationic polyacrylamide could be partially degraded to produce SCFAs during anaerobic fermentation, cationic polyacrylamide and its major degradation metabolite, polyacrylic acid, inhibited all the sludge solubilization, hydrolysis, acidogenesis, acetogenesis and homoacetogenesis processes to some extents. As a result, the accumulation of SCFAs in the cationic polyacrylamide added systems decreased rather than increased. However, the inhibition to acetogenesis and homoacetogenesis was slighter than that to acidogenesis, leading to an increase of acetic acid to total SCFAs. It was further found that cationic polyacrylamide had stronger ability to adhere to protein molecules surface, which inhibited the bioconversion of proteins more severely. Illumina MiSeq sequencing analyses showed that cationic polyacrylamide decreased microbial community diversity, altered community structure and changed activities of key enzymes responsible for SCFAs accumulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2019.02.036DOI Listing

Publication Analysis

Top Keywords

cationic polyacrylamide
40
waste activated
16
activated sludge
16
anaerobic fermentation
12
cationic
10
polyacrylamide
10
short-chain fatty
8
fatty acids
8
fermentation waste
8
scfas
8

Similar Publications

Influence of Added Cellulose Nanocrystals on the Rheology of Polymers.

Nanomaterials (Basel)

January 2025

Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

The interactions between cellulose nanocrystals and six different polymers (three anionic, two non-ionic, and one cationic) were investigated using rheological measurements of aqueous solutions of nanocrystals and polymers. The experimental viscosity data could be described adequately by a power-law model. The variations in power-law parameters (consistency index and flow behavior index) with concentrations of nanocrystals and polymers were determined for different combinations of nanocrystals and polymers.

View Article and Find Full Text PDF

Interaction mechanisms between fouling and chemical cleaning on the ageing behavior of ion-exchange membranes during electrodialysis treatment of flue gas desulfurization wastewater.

Water Res

March 2025

Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China. Electronic address:

Article Synopsis
  • Chemically irreversible fouling (CIF) and chemical erosion significantly affect the performance and properties of ion-exchange membranes (IEMs) used in desalination, leading to a phenomenon known as membrane ageing.
  • The ageing process consists of three stages where desalination rates initially decrease, then increase, and finally decline again, largely influenced by contaminants like anionic polyacrylamide (APAM) and calcium sulfate (CaSO).
  • CIF limits cleaning efficiency and alters membrane structure, while chemical erosion damages functional groups and the polymer matrix, affecting key attributes like ion exchange capacity and mechanical strength, thus ultimately influencing the membranes' fouling behaviors.
View Article and Find Full Text PDF

Multi-crosslinked strong, tough and anti-freezing organohydrogels for flexible sensors.

Nanoscale

January 2025

CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.

Article Synopsis
  • Hydrogels show great promise for smart and biocompatible applications, but improving their mechanical properties and stability in various conditions has been a challenge.
  • Researchers developed a strong and tough organohydrogel using a dual-network structure that incorporates interpenetrated polymer chains and additional materials to enhance its properties.
  • The resulting organohydrogel features impressive tensile strength, stretchability, and ionic conductivity, as well as stability across a wide temperature range, making it suitable for future flexible electronics applications.
View Article and Find Full Text PDF

Biobased foams have the potential to serve as eco-friendly alternatives to petroleum-based foams, provided they achieve comparable thermomechanical and physical properties. We propose a facile approach to fabricate eco-friendly cellulose nanofibril (CNF)-reinforced thermomechanical pulp (TMP) fiber-based foams via an oven-drying process with thermal conductivity as low as 0.036 W/(m·K) at a 34.

View Article and Find Full Text PDF

A Gold Rush: Designing Hydrogels for Selective Recovery in Wastewater Containing Mixed Metal Ions.

ACS Appl Mater Interfaces

December 2024

European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.

The use of synthetic hydrogels in wastewater treatment represents a promising and scalable approach to achieving clean water. By modulation of their chemical structure, hydrogels can effectively remove a wide range of toxic compounds, including emerging organic pollutants and heavy metals. For the latter, recovery is essential for both environmental protection and metal recycling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!