Endogenous fluorescence imaging techniques are key for modern single-molecule quantification without the use of additional labeling probes. However, the drawback of weak fluorescence signal is the primary challenge in meeting the ever-increasing demands of single-molecule detection. Here, we report a simple and reliable method that provides up to ∼100-fold uniform fluorescence enhancement of endogenous fluorescence of the capsaicinoid molecule. The method is based on a single nanoparticle plasmon-amplified endogenous fluorescence nanospectroscopic sensor (PAEFS). This work demonstrated the applicability of PAEFS in refining sensitivity at the single-molecule level by showing ultralow limits of detection (10 times lower than previous reports) of fluorescence-based capsaicinoids with a wide range of linear response (18 zM to 85 pM). Spectrally overlapped capsaicinoid analogues were quantified ratiometrically to detect the analogue percentages in real samples. The novel endogenous fluorescence enhancement approach presented here represents a universal sensor for enhanced detection of single molecules using existing techniques without altering the original molecular features or using add-on labeling probes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssensors.9b00058 | DOI Listing |
We have employed a triazine-based conjugated polymer network (CPN) for the selective detection of hypochlorite in a semi-aqueous environment. CPNs have been widely employed in gas capture, separation, and adsorption, but the fluorescent properties of CPNs possessing extensive π-conjugated systems tend to be unexplored. Herein, we report the photophysical properties of the CPN and investigate its sensing capability towards hypochlorite.
View Article and Find Full Text PDFLuminescence
January 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China.
Hypochlorous acid (HClO) is released by immune cells in the immune system, and it helps the body fight off infections and inflammation by killing bacteria, viruses, and other pathogens. However, tissue damage or apoptosis may also be induced by excess HClO. On this basis, we designed the probe TPE-NS by choosing tetraphenylethylene (TPE) as the luminescent unit and dimethylthiocarbamoyl chloride as the recognition site.
View Article and Find Full Text PDFTransgenic Res
January 2025
Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic.
Proto-oncogene KRAS, GTPase (KRAS) is one of the most intensively studied oncogenes in cancer research. Although several mouse models allow for regulated expression of mutant KRAS, selective isolation and analysis of transforming or tumor cells that produce the KRAS oncogene remains a challenge. In our study, we present a knock-in model of oncogenic variant KRAS that enables the "activation" of KRAS expression together with production of red fluorescent protein tdTomato.
View Article and Find Full Text PDFAnal Chem
January 2025
Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
Bioimaging technology has been broadly used in biomedicine, and the growth of multimodal imaging technology based on synergistic advantages can overcome the shortcomings of traditional single-modal bioimaging methods and attain high specificity and sensitivity in the fields of bioimaging and biosensing. The analysis of low-abundance microRNAs (miRNAs) in complex organisms is of high importance for early-stage diagnosis and clinical treatment of tumors. In our current study, a biosensing nanoplatform based on Tf-AuNCs and MnO nanosheets was developed for multimodal imaging of tumor cells.
View Article and Find Full Text PDFAndrology
January 2025
Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil.
Background: 6-Nitrodopamine (6-ND) released from rat vas deferens acts an endogenous modulator of vas deferens contractility.
Objectives: To investigate whether rat isolated seminal vesicles (RISV) releases 6-ND, the mechanisms involved in the release, and the modulatory role of 6-ND on tissue contractility.
Methods: Rat seminal vesicles were removed and placed in Krebs-Henseleit's solution at 37°C for 30 min, and an aliquot was used to analyze the concentrations of 6-ND, dopamine, noradrenaline, and adrenaline by liquid chromatography with tandem mass spectrometry (LC-MS/MS).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!