Targeting HOX/PBX dimer formation as a potential therapeutic option in esophageal squamous cell carcinoma.

Cancer Sci

Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery I, Peking University Cancer Hospital and Institute, Beijing, China.

Published: May 2019

Homeobox genes are known to be classic examples of the intimate relationship between embryogenesis and tumorigenesis, which are a family of transcriptional factors involved in determining cell identity during early development, and also dysregulated in many malignancies. Previously, HOXB7, HOXC6 and HOXC8 were found abnormally upregulated in esophageal squamous cell carcinoma (ESCC) tissues compared with normal mucosa and seen as poor prognostic predictors for ESCC patients, and were shown to promote cell proliferation and anti-apoptosis in ESCC cells. These three HOX members have a high level of functional redundancy, making it difficult to target a single HOX gene. The aim of the present study was to explore whether ESCC cells are sensitive to HXR9 disrupting the interaction between multiple HOX proteins and their cofactor PBX, which is required for HOX functions. ESCC cell lines (KYSE70, KYSE150, KYSE450) were treated with HXR9 or CXR9, and coimmunoprecipitation and immunofluorescent colocalization were carried out to observe HOX/PBX dimer formation. To further investigate whether HXR9 disrupts the HOX pro-oncogenic function, CCK-8 assay and colony formation assay were carried out. Apoptosis was assessed by flow cytometry, and tumor growth in vivo was investigated in a xenograft model. RNA-seq was used to study the transcriptome of HXR9-treated cells. Results showed that HXR9 blocked HOX/PBX interaction, leading to subsequent transcription alteration of their potential target genes, which are involved in JAK-signal transducer and activator of transcription (STAT) activation and apoptosis inducement. Meanwhile, HXR9 showed an antitumor phenotype, such as inhibiting cell proliferation, inducing cell apoptosis and significantly retarding tumor growth. Therefore, it is suggested that targeting HOX/PBX may be a novel effective treatment for ESCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6501045PMC
http://dx.doi.org/10.1111/cas.13993DOI Listing

Publication Analysis

Top Keywords

targeting hox/pbx
8
hox/pbx dimer
8
dimer formation
8
esophageal squamous
8
squamous cell
8
cell carcinoma
8
cell proliferation
8
escc cells
8
tumor growth
8
cell
7

Similar Publications

The HOX and PBX genes encode transcription factors that have key roles in development and cancer, both independently and as a heterodimer within a complex of proteins that recognizes specific sequences in DNA and can both activate and repress transcription of target genes. Due to functional redundancy amongst HOX proteins, knock down or knock out studies of individual genes often do not result in an altered phenotype. An alternative approach is to target the interaction between HOX and PBX proteins, which is dependent on a conserved hexapeptide region within HOX.

View Article and Find Full Text PDF

Lymphangioleiomyomatosis (LAM) is a rare, progressive lung disease that predominantly affects women. LAM cells carry mutations, causing mTORC1 hyperactivation and uncontrolled cell growth. mTORC1 inhibitors stabilize lung function; however, sustained efficacy requires long-term administration, and some patients fail to tolerate or respond to therapy.

View Article and Find Full Text PDF

Molecular features and vulnerabilities of recurrent chordomas.

J Exp Clin Cancer Res

July 2021

Institute of Pathology, University Hospital Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.

Background: Tumor recurrence is one of the major challenges in clinical management of chordoma. Despite R0-resection, approximately 50% of chordomas recur within ten years after initial surgery. The underlying molecular processes are poorly understood resulting in the lack of associated therapeutic options.

View Article and Find Full Text PDF

Targeting HOX/PBX dimer formation as a potential therapeutic option in esophageal squamous cell carcinoma.

Cancer Sci

May 2019

Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery I, Peking University Cancer Hospital and Institute, Beijing, China.

Homeobox genes are known to be classic examples of the intimate relationship between embryogenesis and tumorigenesis, which are a family of transcriptional factors involved in determining cell identity during early development, and also dysregulated in many malignancies. Previously, HOXB7, HOXC6 and HOXC8 were found abnormally upregulated in esophageal squamous cell carcinoma (ESCC) tissues compared with normal mucosa and seen as poor prognostic predictors for ESCC patients, and were shown to promote cell proliferation and anti-apoptosis in ESCC cells. These three HOX members have a high level of functional redundancy, making it difficult to target a single HOX gene.

View Article and Find Full Text PDF

Heterocyclic Diamidine DNA Ligands as HOXA9 Transcription Factor Inhibitors: Design, Molecular Evaluation, and Cellular Consequences in a HOXA9-Dependant Leukemia Cell Model.

J Med Chem

February 2019

UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la Recherche sur le Cancer de Lille (IRCL) , F-59045 Lille , France.

Most transcription factors were for a long time considered as undruggable targets because of the absence of binding pockets for direct targeting. HOXA9, implicated in acute myeloid leukemia, is one of them. To date, only indirect targeting of HOXA9 expression or multitarget HOX/PBX protein/protein interaction inhibitors has been developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!