Real-time cellular analyzer (RTCA) has been generally applied to test the cytotoxicity of chemicals. However, several factors impact the experimental quality. A non-negligible factor is the abnormal time-dependent cellular response curves (TCRCs) of the wells located at the edge of the E-plate which is defined as edge effect. In this paper, a novel statistical analysis is proposed to detect the edge effect. First, TCRCs are considered as observations of a random variable in a functional space. Then, functional principal component analysis (FPCA) is adopted to extract the principal component (PC) functions of the TCRCs, and the first and second PCs of these curves are selected to distinguish abnormal TCRCs. The average TCRC of the inner wells with the same culture environment is set as the standard. If the distance between the scoring point of the standard curve and one designated scoring point exceeds the defined threshold, the corresponding TCRC of the designated point should be removed automatically. The experimental results demonstrate the effectiveness of the proposed algorithm. This method can be used as a standard method to resolve general time-dependent series issues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCBB.2019.2903094 | DOI Listing |
J Contam Hydrol
December 2024
Department of Zoology, Central University of Jammu, Jammu & Kashmir 181143, India. Electronic address:
Microplastics (MPs) are ubiquitous and are increasing globally, but there is limited information available on their presence in freshwater ecosystems. This research work aims to investigate the abundance, sinking behavior, and risk assessment of MPs in the freshwater River Basantar, Jammu & Kashmir, India. Microplastic abundance in sediments was recorded in the range of 1-6 items g, with a mean abundance of 3 ± 1.
View Article and Find Full Text PDFJ Food Sci
December 2024
College of Life Science, Northeast Forestry University, Harbin, China.
Red raspberries, valued for their nutrients and bioactive compounds, have broad uses in processing and healthy products. However, limited comprehensive research focused on the comparison of phenolic compounds of red raspberry, especially species cultivated in Northeast China, has been reported. This study aimed to conduct a thorough investigation of 24 red raspberry varieties in Northeast China for the first time, evaluating their phenolic compounds and antioxidant capacities.
View Article and Find Full Text PDFJ Food Sci
December 2024
Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ) Unidad Sureste, Tablaje Catastral Km 5.5 Carretera Sierra Papacal-Chuburná Puerto, Parque Científico Tecnológico de, Yucatán, Mexico.
The effect of solvents with different polarities on the recovery of phytochemicals (carotenoids, capsaicinoids, and phenolic compounds) from habanero pepper (Capsicum chinense) and their association with antioxidant activity (ABTS and DPPH) was evaluated through Ultra-Performance-Liquid Chromatography coupled with a Photodiode Array Detector and a Electrospray Ionization Mass Spectrometry (UPLC-PDA-ESI-MS)-based chemometric analysis, including linear correlation, multiple linear regression, and principal component analysis (PCA). The solvent polarity scale was established according to solvent dielectric constants (ɛ). Color variation (ΔE) was used to determine the presence of carotenoids, with the highest ΔE obtained using low-polarity solvents (hexane and ethyl acetate).
View Article and Find Full Text PDFPhytochem Anal
December 2024
School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
Introduction: Citri Reticulatae Pericarpium (CRP), also known as Chenpi in Chinese, is the dry mature peel of Citrus reticulata Blanco or its cultivated varieties. CRP as the health-care food and dietary supplement has been widely used in various diseases. The quality of CRP can be affected by various factors, which are closely related to the metabolite composition of CRP.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01605, USA.
Multicellular spheroids embedded in 3D hydrogels are prominent in vitro models for 3D cell invasion. Yet, quantification methods for spheroid cell invasion that are high-throughput, objective and accessible are still lacking. Variations in spheroid sizes and the shapes of the cells within render it difficult to objectively assess invasion extent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!