Bluetongue virus (BTV) causes an economically important disease in domestic and wildlife ruminants and is transmitted by Culicoides biting midges. In ruminants, BTV has a wide cell tropism that includes endothelial cells of vascular and lymphatic vessels as important cell targets for virus replication, and several cell types of the immune system including monocytes, macrophages and dendritic cells. Thus, cell-entry represents a particular challenge for BTV as it infects many different cell types in widely diverse vertebrate and invertebrate hosts. Improved understanding of BTV cell-entry could lead to novel antiviral approaches that can block virus transmission from cell to cell between its invertebrate and vertebrate hosts. Here, we have investigated BTV cell-entry using endothelial cells derived from the natural bovine host (BFA cells) and purified whole virus particles of a low-passage, insect-cell isolate of a virulent strain of BTV-1. Our results show that the main entry pathway for infection of BFA cells is dependent on actin and dynamin, and shares certain characteristics with macropinocytosis. The ability to use a macropinocytosis-like entry route could explain the diverse cell tropism of BTV and contribute to the efficiency of transmission between vertebrate and invertebrate hosts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/jgv.0.001240 | DOI Listing |
Fish Shellfish Immunol Rep
December 2023
Department of Biotechnology, Faculty of Science and Technology, Rajamangala University of Technology Tawan-ok, Sriracha, Chonburi 20110, Thailand.
This short paper on yellow head virus Type-1 (YHV-1) of shrimp describes preliminary research on the potential for using YHV-1 attenuated in insect cells to protect shrimp against yellow head disease (YHD). YHV-1 can cause severe mortality in the cultivated shrimp and . No practical vaccination has been reported.
View Article and Find Full Text PDFJ Gen Virol
April 2019
2University of Surrey, Guildford, Surrey, GU2 7XH, UK.
Bluetongue virus (BTV) causes an economically important disease in domestic and wildlife ruminants and is transmitted by Culicoides biting midges. In ruminants, BTV has a wide cell tropism that includes endothelial cells of vascular and lymphatic vessels as important cell targets for virus replication, and several cell types of the immune system including monocytes, macrophages and dendritic cells. Thus, cell-entry represents a particular challenge for BTV as it infects many different cell types in widely diverse vertebrate and invertebrate hosts.
View Article and Find Full Text PDFAm J Trop Med Hyg
February 2018
Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland.
Zika virus (ZIKV) is a mosquito-borne member of the genus that has emerged since 2007 to cause outbreaks in Africa, Asia, Oceania, and most recently, in the Americas. Here, we used an isolate history as well as genetic and phylogenetic analyses to characterize three low-passage isolates representing African (ArD 41525) and Asian (CPC-0740, SV0127-14) lineages to investigate the potential phenotypic differences in vitro and in vivo. The African isolate displayed a large plaque phenotype (∼3-4 mm) on Vero and HEK-293 cells, whereas the Asian isolates either exhibited a small plaque phenotype (∼1-2 mm) or did not produce any plaques.
View Article and Find Full Text PDFIt is well known that Tn5B1-4 (commercially known as the High Five) cell line is highly susceptible to baculovirus and provides superior production of recombinant proteins when compared to other insect cell lines. But the characteristics of the cell line do not always remain stable and may change upon continuous passage. Recently an alphanodavirus, named Tn5 Cell Line Virus (or TNCL Virus), was identified in High Five cells in particular.
View Article and Find Full Text PDFBackground: The insect cell line is a critical component in the production of recombinant proteins in the baculovirus expression system and new cell lines hold the promise of increasing both quantity and quality of protein production.
Results: Seventy cell lines were established by single-cell cloning from a primary culture of cells derived from eggs of the black witch moth (Ascalapha odorata; Lepidoptera, Noctuidae). Among 8 rapidly growing lines, cell line 38 (Ao38) was selected for further analysis, based on susceptibility to AcMNPV infection and production of secreted alkaline phosphatase (SEAP) from a baculovirus expression vector.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!