A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Surface engineering in PbS partial oxidation: towards an advanced electrocatalyst for reduction of levulinic acid to γ-valerolactone. | LitMetric

Surface engineering in PbS partial oxidation: towards an advanced electrocatalyst for reduction of levulinic acid to γ-valerolactone.

Chem Sci

Beijing National Laboratory for Molecular Science , CAS Key Laboratory of Colloid and Interface and Thermodynamics , CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China . Email: ; Email:

Published: February 2019

Development of mild and efficient strategies for biomass conversion is of great significance, and design of advanced catalysts is crucial for biomass valorization. Herein, we designed PbS-based electrocatalysts through a surface engineering strategy partial oxidation, and the degree of surface oxidation of PbS to PbSO could be easily tuned by calcination temperature. It was discovered that the prepared electrocatalysts could efficiently catalyze reduction of biomass-derived levulinic acid (LA) to γ-valerolactone (GVL) using water as the hydrogen source. Especially, the electrocatalyst calcined at 400 °C (PbS-400) showed outstanding performance with a current density of 13.5 mA cm and a GVL faradaic efficiency of 78.6%, which was far higher than the best results reported up to date. Moreover, GVL was the only product from LA reduction, indicating the excellent selectivity. Mechanism investigation showed that LA was converted through electrocatalytic hydrogenation of carbonyl groups of LA and subsequent intramolecular esterification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6368243PMC
http://dx.doi.org/10.1039/c8sc03161dDOI Listing

Publication Analysis

Top Keywords

surface engineering
8
partial oxidation
8
levulinic acid
8
acid γ-valerolactone
8
engineering pbs
4
pbs partial
4
oxidation advanced
4
advanced electrocatalyst
4
electrocatalyst reduction
4
reduction levulinic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!