Over the past decade, the ability to reduce the dimensions of fluidic devices to the nanometre scale (by using nanotubes or nanopores, for example) has led to the discovery of unexpected water- and ion-transport phenomena. More recently, van der Waals assembly of two-dimensional materials has allowed the creation of artificial channels with ångström-scale precision. Such channels push fluid confinement to the molecular scale, wherein the limits of continuum transport equations are challenged. Water films on this scale can rearrange into one or two layers with strongly suppressed dielectric permittivity or form a room-temperature ice phase. Ionic motion in such confined channels is affected by direct interactions between the channel walls and the hydration shells of the ions, and water transport becomes strongly dependent on the channel wall material. We explore how water and ionic transport are coupled in such confinement. Here we report measurements of ionic fluid transport through molecular-sized slit-like channels. The transport, driven by pressure and by an applied electric field, reveals a transistor-like electrohydrodynamic effect. An applied bias of a fraction of a volt increases the measured pressure-driven ionic transport (characterized by streaming mobilities) by up to 20 times. This gating effect is observed in both graphite and hexagonal boron nitride channels but exhibits marked material-dependent differences. We use a modified continuum framework accounting for the material-dependent frictional interaction of water molecules, ions and the confining surfaces to explain the differences observed between channels made of graphene and hexagonal boron nitride. This highly nonlinear gating of fluid transport under molecular-scale confinement may offer new routes to control molecular and ion transport, and to explore electromechanical couplings that may have a role in recently discovered mechanosensitive ionic channels.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-019-0961-5DOI Listing

Publication Analysis

Top Keywords

channels
8
transport
8
ionic transport
8
fluid transport
8
hexagonal boron
8
boron nitride
8
ionic
5
molecular streaming
4
streaming voltage
4
voltage control
4

Similar Publications

Accurate operando measurement of AlGaN/GaN HEMTs channel temperature and optimization of thermal design.

Nanotechnology

January 2025

Electronic Sci.&Eng., Xi'an Jiaotong University, 28 Xianning West Road,Beilin District, Xi 'an, Shaanxi Province, China, Xi'an, 710049, CHINA.

The accurate estimation of the temperature distribution of the GaN based power devices and optimization of the device structure is of great significance to possibly solve the self-heating problem, which hinders the further enhancement of the device performances. We present here the operando temperature measurement with high spatial resolution using Raman spectroscopy of AlGaN/GaN high electron mobility transistors (HEMTs) with different device structures and explore the optimization of the device thermal design accordingly. The lateral and depth temperature distributions of the single-finger HEMT were characterized.

View Article and Find Full Text PDF

Vintages for New Fashion: Red-Shifted Photoswitching via the Triplet-Photoreaction Channel with Charge-Transfer Complex Sensitizers.

J Am Chem Soc

January 2025

Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China.

Triplet-sensitization has been proven invaluable for creating photoswitches operated over a full visible-light spectrum. While designing efficient triplet-sensitizers is crucial for establishing visible-light photochromism, it remains an appealing yet challenging task. In this work, we propose a versatile strategy to fabricate triplet-sensitizers with intermolecular charge-transfer complexes (CTCs).

View Article and Find Full Text PDF

Purpose: This study aimed to evaluate the quality and reliability of YouTube videos as an educational resource about retinopathy of prematurity.

Methods: Videos were sourced from YouTube using the search terms "retinopathy of prematurity" and "premature retinopathy" with the default settings. Each video was assessed on the following metrics: views, likes, dislikes, comments, upload source, country of origin, view ratio, like ratio, and video power index.

View Article and Find Full Text PDF

Massively parallel Hong-Ou-Mandel interference based on independent soliton microcombs.

Sci Adv

January 2025

State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China.

Hong-Ou-Mandel (HOM) interference is the foundation of quantum optics to test the degree of indistinguishability of two incoming photons, playing a key role in quantum communication, sensing, and photonic quantum computing. Realizing high-visibility HOM interference with massively parallel optical channels is challenging due to the lack of available natural optical references for aligning independent arrayed laser pairs. Here, we demonstrate 50 parallel comb-teeth pairs of continuous-wave weak coherent photons HOM interference using two independently frequency post-aligned soliton microcombs (SMCs), achieving an average fringe visibility over 46%.

View Article and Find Full Text PDF

In mammals, the four subunit isoforms HCN1-4 assemble to form functional homotetrameric and heterotetrameric hyperpolarization-activated cyclic nucleotide-modulated (HCN) ion channels. Despite the outstanding relevance of HCN channels for organisms, including generating electrical rhythmicity in cardiac pacemaker cells and diverse types of brain neurons, key channel properties are still elusive. In particular, the unitary conductance, of HCN channels is highly controversial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!