Epigenetic changes have been used to estimate chronological age across the lifespan, and some studies suggest that epigenetic "aging" clocks may already operate in developing tissue. To better understand the relationship between developmental stage and epigenetic age, we utilized the highly regular sequence of development found in the mammalian neural retina and a well-established epigenetic aging clock based on DNA methylation. Our results demonstrate that the epigenetic age of fetal retina is highly correlated with chronological age. We further establish that epigenetic aging progresses normally in vitro, suggesting that epigenetic aging is a property of individual tissues. This correlation is also retained in stem cell-derived retinal organoids, but is accelerated in individuals with Down syndrome, a progeroid-like condition. Overall, our results suggest that epigenetic aging begins as early as a few weeks post-conception, in fetal tissues, and the mechanisms underlying the phenomenon of epigenetic aging might be studied in developing organs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403397 | PMC |
http://dx.doi.org/10.1038/s41598-019-39919-3 | DOI Listing |
Nat Rev Genet
January 2025
Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA.
Traditionally, differences among individuals have been divided into genetic and environmental causes. However, both types of variation can underlie regulatory changes in gene expression - that is, epigenetic changes - that persist across cell divisions (developmental differentiation) and even across generations (transgenerational inheritance). Increasingly, epigenetic variation among individuals is recognized as an important factor in human diseases and ageing.
View Article and Find Full Text PDFExp Hematol
January 2025
State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin, China.. Electronic address:
Hematopoietic stem cells (HSCs) are central to blood formation and play a pivotal role in hematopoietic and systemic aging. With aging, HSCs undergo significant functional changes, such as an increased stem cell pool, declined homing and reconstitution capacity, and skewed differentiation towards myeloid and megakaryocyte/platelet progenitors. These phenotypic alterations are likely due to the expansion of certain clones, known as clonal hematopoiesis (CH), which leads to disrupted hematopoietic homeostasis, including anemia, impaired immunity, higher risks of hematological malignancies, and even associations with cardiovascular disease, highlighting the broader impact of HSC aging on overall health.
View Article and Find Full Text PDFStem Cell Rev Rep
January 2025
Department of Integrative Biology, Gene Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632 014, India.
Hematopoietic stem cells are a unique population of tissue-resident multipotent cells with an extensive ability to self-renew and regenerate the entire lineage of differentiated blood cells. Stem cells reside in a highly specialized microenvironment with surrounding supporting cells, forming a complex and dynamic network to preserve and maintain their function. The survival, activation, and quiescence of stem cells are largely influenced by niche-derived signals, with aging niche contributing to a decline in stem cell function.
View Article and Find Full Text PDFAging Cell
January 2025
Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, USA.
Epigenetic clocks are a common group of tools used to measure biological aging-the progressive deterioration of cells, tissues, and organs. Epigenetic clocks have been trained almost exclusively using blood-based tissues, but there is growing interest in estimating epigenetic age using less-invasive oral-based tissues (i.e.
View Article and Find Full Text PDFAging Med (Milton)
December 2024
Department of Laboratory Medicine The Second Xiangya Hospital, Central South University Changsha Hunan China.
Objectives: To investigate the effects of suberoylanilide hydroxamic acid (SAHA) on lung fibroblast activation and to examine the role of p66Shc in this process.
Methods: An in vitro pulmonary fibrosis model was established using transforming growth factor-β (TGF-β)-induced MRC-5 lung fibroblasts. The proliferation and migration capacities of MRC-5 cells, along with the expression of fibrosis-related genes, were assessed following treatment with SAHA and/or silence of p66Shc.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!