We report the detection of genomic signatures of giant viruses (GVs) in the metagenomes of three environment samples from Mumbai, India, namely, a pre-filter of a household water purifier, a sludge sample from wastewater treatment plant (WWTP), and a drying bed sample of the same WWTP. The de novo assembled contigs of each sample yielded 700 to 2000 maximum unique matches with the GV genomic database. In all three samples, the maximum number of reads aligned to Pandoraviridae, followed by Phycodnaviridae, Mimiviridae, Iridoviridae, and other Megaviruses. We also isolated GVs from every environmental sample (n = 20) we tested using co-culture of the sample with Acanthomoeba castellanii. From this, four randomly selected GVs were subjected to the genomic characterization that showed remarkable cladistic homology with the three GV families viz., Mimivirirdae (Mimivirus Bombay [MVB]), Megaviruses (Powai lake megavirus [PLMV] and Bandra megavius [BAV]), and Marseilleviridae (Kurlavirus [KV]). All 4 isolates exhibited remarkable genomic identity with respective GV families. Functionally, the genomes were indistinguishable from other previously reported GVs, encoding nearly all COGs across extant family members. Further, the uncanny genomic homogeneity exhibited by individual GV families across distant geographies indicate their yet to be ascertained ecological significance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403294PMC
http://dx.doi.org/10.1038/s41598-019-40171-yDOI Listing

Publication Analysis

Top Keywords

signatures giant
8
giant viruses
8
treatment plant
8
mumbai india
8
genomic
6
sample
5
genomic metagenomic
4
metagenomic signatures
4
viruses ubiquitous
4
water
4

Similar Publications

Symbioses are major drivers of organismal diversification and phenotypic innovation. However, how long-term symbioses shape whole genome evolution in metazoans is still underexplored. Here, we use a giant clam (Tridacna maxima) genome to demonstrate how symbiosis has left complex signatures in an animal's genome.

View Article and Find Full Text PDF

Antiphospholipid syndrome (APS) is associated with recurrent pregnancy morbidity, yet the underlying mechanisms remain elusive. We performed multifaceted characterization of the biological and transcriptomic signatures of mouse placenta and uterine natural killer (uNK) cells in APS. Histological analysis of APS placentas unveiled placental abnormalities, including disturbed angiogenesis, occasional necrotic areas, fibrin deposition, and nucleated red blood cell enrichment.

View Article and Find Full Text PDF

Human calpain-3 and its structural plasticity: dissociation of a homohexamer into dimers on binding titin.

J Biol Chem

December 2024

Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada. Electronic address:

Calpain-3 is an intracellular Ca-dependent cysteine protease abundant in skeletal muscle. Loss-of-function mutations in its single-copy gene cause a dystrophy of the limb-girdle muscles. These mutations, of which there are over 500 in humans, are spread all along this 94-kDa multi-domain protein that includes three 40+-residue sequences (NS, IS1, and IS2).

View Article and Find Full Text PDF

Giant axonal neuropathy (GAN) is a progressive neurodegenerative disease affecting the peripheral and central nervous system and is caused by bi-allelic variants in the GAN gene, leading to loss of functional gigaxonin protein. A treatment does not exist, but a first clinical trial using a gene therapy approach has recently been completed. Here, we conducted the first systematic study of GAN patients treated by German-speaking child neurologists.

View Article and Find Full Text PDF

Within the arachnids, chromosome-level genome assemblies have greatly accelerated the understanding of gene family evolution and developmental genomics in key groups, such as spiders (Araneae), mites and ticks (Acariformes and Parasitiformes). Among other poorly studied arachnid orders that lack genome assemblies altogether are the clade Pedipalpi, which is comprised of three orders that form the sister group of spiders, which diverged over 400 Mya. We close this gap by generating the first chromosome-level assembly from a single specimen of the vinegaroon Mastigoproctus giganteus (Uropygi).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!