Variations in levels of processing affect memory encoding and subsequent retrieval performance, but it is unknown how processing depth affects communication patterns within the network of interconnected brain regions involved in episodic memory encoding. In 113 healthy adults scanned with functional MRI, we used graph theory to calculate centrality indices representing the brain regions' relative importance in the memory network. We tested how communication patterns in 42 brain regions involved in episodic memory encoding changed as a function of processing depth, and how these changes were related to episodic memory ability. Centrality changes in right middle frontal gyrus, right inferior parietal lobule and left superior frontal gyrus were positively related to semantic elaboration during encoding. In the same regions, centrality during successful episodic memory encoding was related to performance on the episodic memory task, indicating that these centrality changes reflect processes that support memory encoding through deep elaborative processing. Similar analyses were performed for congruent trials, i.e. events that fit into existing knowledge structures, but no relationship between centrality changes and congruity were found. The results demonstrate that while elaboration and congruity have similar beneficial effects on source memory performance, the cortical signatures of these processes are probably not identical.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403239PMC
http://dx.doi.org/10.1038/s41598-019-39999-1DOI Listing

Publication Analysis

Top Keywords

memory encoding
24
episodic memory
20
centrality changes
12
memory
10
source memory
8
processing depth
8
communication patterns
8
brain regions
8
regions involved
8
involved episodic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!