Activation of constitutive androstane receptor inhibits intestinal CFTR-mediated chloride transport.

Biomed Pharmacother

Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Research Center of Transport Protein for Medical Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand. Electronic address:

Published: March 2019

Constitutive androstane receptor (CAR) belonging to the nuclear receptor superfamily plays an important role in the xenobiotic metabolism and disposition. It has been reported that CAR regulates the expression of the ATP-binding cassette (ABC) transporters in the intestine, such as multidrug resistance protein 1 (MDR1) and multidrug resistance-associated protein 2/3 (MRP2 and MRP3). In this study, we investigated the role of CAR in the regulation of cystic fibrosis transmembrane conductance regulator (CFTR)-mediated chloride transport in T84 human colonic epithelial cells and mouse intestinal tissues. Treatments of T84 cell monolayers with specific CAR agonists (CITCO and phenytoin at concentrations of 1 μM and 5 μM, respectively) for 24 h decreased transepithelial Cl secretion in response to cAMP-dependent agonist. This inhibition was abolished by coincubation of CITCO with a CAR antagonist, CINPA1. We confirmed that an inhibitory effect of CAR agonists was not due to their cytotoxicity. Basolateral membrane permeabilization experiments also revealed that activation of CAR decreased apical Cl current stimulated by both CPT-cAMP and genistein (a direct CFTR activator). Such activation also reduced both mRNA and protein expression of CFTR. Furthermore, CITCO decreased cholera toxin (CT)-induced Cl secretion across T84 cell monolayers. In ICR mice, administration of TCPOBOP (3 mg/kgBW), a murine-specific CAR agonist, for 7 days produced significant decreases in CFTR mRNA and protein expressions in intestinal tissues. Interestingly, TCPOBOP also inhibited CT-induced intestinal fluid accumulation in mice. This is the first evidence showing that CFTR was downregulated by CAR activation in the intestine. Our findings suggest that CAR has potential as a new drug target for treatment of condition with hyperactivity/ hyperfunction of CFTR especially secretory diarrheas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2019.01.015DOI Listing

Publication Analysis

Top Keywords

car
10
constitutive androstane
8
androstane receptor
8
cftr-mediated chloride
8
chloride transport
8
intestinal tissues
8
t84 cell
8
cell monolayers
8
car agonists
8
mrna protein
8

Similar Publications

Chimeric antigen receptor (CAR)-T cell therapy represents a breakthrough for the treatment of hematological malignancies. However, to treat solid tumors and certain hematologic cancers, next-generation CAR-T cells require further genetic modifications to overcome some of the current limitations. Improving manufacturing processes to preserve cell health and function of edited T cells is equally critical.

View Article and Find Full Text PDF

Contemporary research in 3D object detection for autonomous driving primarily focuses on identifying standard entities like vehicles and pedestrians. However, the need for large, precisely labelled datasets limits the detection of specialized and less common objects, such as Emergency Medical Service (EMS) and law enforcement vehicles. To address this, we leveraged the Car Learning to Act (CARLA) simulator to generate and fairly distribute rare EMS vehicles, automatically labelling these objects in 3D point cloud data.

View Article and Find Full Text PDF

Objective: To investigate the short-term blood flow changes and image features of the retina and choroid in patients who underwent carotid artery revascularization (CAR) for severe carotid artery stenosis using widefield swept-source OCT angiography (OCTA).

Design: Prospective study.

Participants: This prospective study included 112 eyes (56 eyes on the ipsilateral side and 56 eyes on the contralateral side) of 56 participants with severe carotid artery stenosis.

View Article and Find Full Text PDF

Bispecific antibody is a new treatment for hematological disease, especially for lymphoma, myeloma and acute lymphoblastic leukemia. This class of treatment presents the same kind of side effect as CAR-T cell which are immune-mediated. Nevertheless, infectious complication remains a major concerns with related mortality.

View Article and Find Full Text PDF

Background: Several approaches are being explored for engineering off-the-shelf chimeric antigen receptor (CAR) T cells. In this study, we engineered chimeric Fcγ receptor (FcγR) T cells and tested their potential as a versatile platform for universal T cell therapy.

Methods: Chimeric FcγR (CFR) constructs were generated using three distinct forms of FcγR, namely CD16A, CD32A, and CD64.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!