Ge-doped silica fibre (GDSF) thermoluminescence dosimeters (TLD) are non-hygroscopic spatially high-resolution radiation sensors with demonstrated potential for radiotherapy dosimetry applications. The INTRABEAM system with spherical applicators, one of a number of recent electronic brachytherapy sources designed for intraoperative radiotherapy (IORT), presents a representative challenging dosimetry situation, with a low keV photon beam and a desired rapid dose-rate fall-off close-up to the applicator surface. In this study, using the INTRABEAM system, investigations were made into the potential application of GDSF TLDs for in vivo IORT dosimetry. The GDSFs were calibrated over the respective dose- and depth-range 1 to 20 Gy and 3 to 45 mm from the x-ray probe. The effect of different sizes of spherical applicator on TL response of the fibres was also investigated. The results show the GDSF TLDs to be applicable for IORT dose assessment, with the important incorporated correction for beam quality effects using different spherical applicator sizes. The total uncertainty in use of this type of GDSF for dosimetry has been found to range between 9.5% to 12.4%. Subsequent in vivo measurement of skin dose for three breast patients undergoing IORT were performed, the measured doses being below the tolerance level for acute radiation toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6560/ab0d4e | DOI Listing |
J Phys Condens Matter
February 2024
Laboratoire des Solides Irradiés (LSI), CEA/DRF/IRAMIS, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.
We present a first-principles investigation of Sn paramagnetic centers in Sn-doped vitreous silica based on calculations of the electron paramagnetic resonance (EPR) parameters. The present investigation provides evidence of an extended analogy between the family of Ge paramagnetic centers in Ge-doped silica and the family of Sn paramagnetic centers in Sn-doped silica for SnOconcentrations below phase separation. We infer, also keeping into account the larger spin-orbit coupling of Sn atoms with respect to Ge atoms, that a peculiar and highly distorted three-fold coordinated Sn center (i.
View Article and Find Full Text PDFNanomaterials (Basel)
June 2023
School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA.
Diatoms are single-celled algae that biosynthesize cell walls of biogenic silica called "frustules" that are intricately patterned at the submicron- and nanoscale. In this study, we amplified the intrinsic luminescent properties of antibody-functionalized diatom biosilica frustules for enhanced, label-free, photoluminescence (PL) detection of immunocomplex formation. It was hypothesized that metabolically doped GeO centers in antibody-functionalized diatom biosilica would enhance PL emission associated with nucleophilic immunocomplex formation.
View Article and Find Full Text PDFFiber Bragg gratings with a very low insertion loss are inscribed using the phase mask technique and a single infrared (800 nm) femtosecond laser pulse. The morphology of the resultant light-induced structural changes in the Ge-doped silica fiber (SMF-28) is analyzed using scanning electron microscopy. The electron microscopy images reveal that each Bragg grating period incorporates an elongated micropore embedded in a region of homogeneous material modification.
View Article and Find Full Text PDFSensors (Basel)
September 2022
School of Information and Communications Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
In this paper, we design a silica-cladded Germania-doped ring-core fiber (RCF) that supports orbital angular momentum (OAM) modes. By optimizing the fiber structure parameters, the RCF possesses a near-zero flat dispersion with a total variation of <±30 ps/nm/km over 1770 nm bandwidth from 1040 to 2810 nm for the OAM1,1 mode. A beyond-two-octave supercontinuum spectrum of the OAM1,1 mode is generated numerically by launching a 40 fs 120 kW pulse train centered at 1400 nm into a 12 cm long designed 50 mol% Ge-doped fiber, which covers 2130 nm bandwidth from 630 nm to 2760 nm at −40 dB of power level.
View Article and Find Full Text PDFPhys Med
August 2022
Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, 47500 Petaling Jaya, Selangor, Malaysia; Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom.
Purpose: We have conducted for the first time a Malaysian postal dosimetry audit of external beam under non-reference conditions by evaluating the output performance while screening for systematic errors within the dosimetry chain. The potential use from the choice of detector were investigated along with the search for other sources of discrepancies.
Methods: Ten radiotherapy centres were audited, encompassing 16 megavoltage photon beam arrangements, adopting the IAEA postal dosimetry protocol for non-reference conditions, with a holder modified to accommodate three TLD types: Ge-doped cylindrical silica fibres (CF), Ge-doped flat silica fibres (FF), and TLD-100 powder.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!