Herein, we fabricated fluorescent gold nanoclusters (Au NCs) by using trypsin as a ligand. The fabricated trypsin-Au NCs emit bright red color fluorescence upon the exposure of 365 nm UV light. The trypsin-Au NCs are stable and well dispersed in water, which exhibited strong red emission peak at 665 nm upon excitation wavelength of 520 nm. The red fluorescence of trypsin-Au NCs was greatly quenched by the addition of multiple analytes such as drugs (carbidopa and dopamine) and three divalent metal ions (Cu, Co and Hg ion). As a result, a novel fluorescence "turn-off" probe was developed for the detection of the above analytes with good selectivity and sensitivity. This method exhibits the detection limits for carbidopa, dopamine, Cu, Co and Hg ions are 6.5, 0.14, 5.2, 0.0078, and 0.005 nM, respectively. The trypsin-Au NCs were successfully applied to detect drugs (carbidopa, and dopamine) in pharmaceutical samples and metal ions (Cu, Co and Hg ion) in biofluids and water samples, exhibiting good precision and accuracy, which offers a facile analytical strategy for assaying of the above analytes in pharmaceutical and biological samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2019.02.078DOI Listing

Publication Analysis

Top Keywords

carbidopa dopamine
16
trypsin-au ncs
16
fluorescent gold
8
gold nanoclusters
8
multiple analytes
8
dopamine ions
8
drugs carbidopa
8
metal ions
8
ions ion
8
ncs
5

Similar Publications

Background: It is now widely acknowledged that diet, lifestyle, and environmental exposures largely affect an individual's metabolic state in health and disease, including the brain. Metabolomics has demonstrated its potential to enable exciting discoveries in brain health, facilitated by advances in analytical and informatics techniques. Here, we highlighted the use of MS/MS-based untargeted metabolomics to study the diet and medication exposure of cognitively declined cohorts through the newly developed FoodMASST and DrugMASST tools.

View Article and Find Full Text PDF

Unlabelled: Despite a deep understanding of Parkinson's disease (PD) and levodopa-induced dyskinesia (LID) pathogenesis, current therapies are insufficient to effectively manage the progressive nature of PD or halt LID. Growing hypotheses suggested the NOD-like receptor 3 (NLRP3) inflammasome and orphan nuclear receptor-related 1 (Nurr1)/glycogen synthase kinase-3β (GSK-3β) and peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α)/sirtuin 3 (SIRT3) pathways as potential avenues for halting neuroinflammation and oxidative stress in PD.

Aims: This study investigated for the first time the neuroprotective effect of canagliflozin against PD and LID in rotenone-intoxicated rats, emphasizing the crosstalk among the NLRP3/caspase-1 cascade, PGC-1α/SIRT3 pathway, mammalian target of rapamycin (mTOR)/beclin-1, and Nurr1/β-catenin/GSK-3β pathways as possible treatment strategies in PD and LID.

View Article and Find Full Text PDF

Sustained effects of repeated levodopa (L-DOPA) administration on reward circuitry, effort-based motivation, and anhedonia in depressed patients with higher inflammation.

Brain Behav Immun

December 2024

Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30322, USA; The Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322. Electronic address:

Inflammatory biomarkers like C-reactive protein (CRP) are elevated in a subset of patients with depression and associated with lower functional connectivity (FC) in a ventral striatum (VS) to ventromedial prefrontal cortex (vmPFC) reward circuit and symptoms of anhedonia. Evidence linking these relationships to the effects of inflammation on dopamine is consistent with our recent findings that acute levodopa (L-DOPA) increased VS-vmPFC FC in association with deceased anhedonia in depressed patients with higher but not lower CRP (>2 versus ≤ 2 mg/L). To determine whether repeated L-DOPA administration caused sustained effects on FC and behavior in these patients, medically stable depressed outpatients with CRP > 2 mg/L and anhedonia (n = 18) received one week of three doses of L-DOPA (150-450 mg/day/week with carbidopa) or placebo in a randomized order.

View Article and Find Full Text PDF

Taurine, an essential amino acid, attenuates rotenone-induced Parkinson's disease in rats by inhibiting alpha-synuclein aggregation and augmenting dopamine release.

Behav Brain Res

March 2025

DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria.

Reducing antioxidant levels exacerbates the generation of reactive oxygen/nitrogen species, leading to alpha-synuclein aggregation and the degeneration of dopaminergic neurons. These play a key role in the onset of Parkinson's disease (PD), for which effective treatment remains elusive. This study examined the neuroprotective effects of taurine, an essential β-amino acid with antioxidant and antiinflammation properties, in Swiss male mice exposed to rotenone-induced PD.

View Article and Find Full Text PDF

Introduction: Parkinson's disease is a chronic neurodegenerative disease entity characterized by heterogeneity of symptoms and progression. Levodopa is an efficacious and well tolerated dopamine substituting drug for its therapy. Its O-methylation and generation of 3-O-methyldopa is enhanced by levodopa/dopa decarboxylase inhibitor formulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!