Exercise Alleviates Obesity-Induced Metabolic Dysfunction via Enhancing FGF21 Sensitivity in Adipose Tissues.

Cell Rep

State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China; Department of Pharmacy and Pharmacology, The University of Hong Kong, Hong Kong, China. Electronic address:

Published: March 2019

Exercise promotes adipose remodeling and improves obesity-induced metabolic disorders through mechanisms that remain obscure. Here, we identify the FGF21 signaling in adipose tissues as an obligatory molecular transducer of exercise conferring its metabolic benefits in mice. Long-term high fat diet-fed obese mice exhibit compromised effects of exogenous FGF21 on alleviation of hyperglycemia, hyperinsulinemia, and hyperlipidemia, accompanied with markedly reduced expression of FGF receptor-1 (FGFR1) and β-Klotho (KLB) in adipose tissues. These impairments in obese mice are reversed by treadmill exercise. Mice lacking adipose KLB are refractory to exercise-induced alleviation of insulin resistance, glucose dysregulation, and ectopic lipid accumulation due to diminished adiponectin production, excessive fatty acid release, and enhanced adipose inflammation. Mechanistically, exercise induces the adipose expression of FGFR1 and KLB via peroxisome proliferator-activated receptor-gamma-mediated transcriptional activation. Thus, exercise sensitizes FGF21 actions in adipose tissues, which in turn sends humoral signals to coordinate multi-organ crosstalk for maintaining metabolic homeostasis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2019.02.014DOI Listing

Publication Analysis

Top Keywords

adipose tissues
16
obesity-induced metabolic
8
adipose
8
obese mice
8
exercise
6
exercise alleviates
4
alleviates obesity-induced
4
metabolic
4
metabolic dysfunction
4
dysfunction enhancing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!