IPMK Mediates Activation of ULK Signaling and Transcriptional Regulation of Autophagy Linked to Liver Inflammation and Regeneration.

Cell Rep

The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Electronic address:

Published: March 2019

AI Article Synopsis

  • Autophagy is essential for health and disease, and inositol polyphosphate multikinase (IPMK) is crucial for regulating this process in the liver.
  • Deleting IPMK reduces autophagy in both cell lines and mouse livers, negatively impacting liver inflammation and regeneration without needing its catalytic activity.
  • IPMK influences autophagy through two main pathways involving AMPK and its connections to Sirt-1 and ULK1, highlighting its potential as a therapeutic target for diseases related to liver dysfunction.

Article Abstract

Autophagy plays a broad role in health and disease. Here, we show that inositol polyphosphate multikinase (IPMK) is a prominent physiological determinant of autophagy and is critical for liver inflammation and regeneration. Deletion of IPMK diminishes autophagy in cell lines and mouse liver. Regulation of autophagy by IPMK does not require catalytic activity. Two signaling axes, IPMK-AMPK-Sirt-1 and IPMK-AMPK-ULK1, appear to mediate the influence of IPMK on autophagy. IPMK enhances autophagy-related transcription by stimulating AMPK-dependent Sirt-1 activation, which mediates the deacetylation of histone 4 lysine 16. Furthermore, direct binding of IPMK to ULK and AMPK forms a ternary complex that facilitates AMPK-dependent ULK phosphorylation. Deletion of IPMK in cell lines and intact mice virtually abolishes lipophagy, promotes liver damage as well as inflammation, and impairs hepatocyte regeneration. Thus, targeting IPMK may afford therapeutic benefits in disabilities that depend on autophagy and lipophagy-specifically, in liver inflammation and regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6494083PMC
http://dx.doi.org/10.1016/j.celrep.2019.02.013DOI Listing

Publication Analysis

Top Keywords

liver inflammation
12
inflammation regeneration
12
ipmk
9
regulation autophagy
8
deletion ipmk
8
cell lines
8
autophagy ipmk
8
autophagy
7
liver
5
ipmk mediates
4

Similar Publications

Oxidative damage, oxidative inflammation, and a range of downstream diseases represent significant threats to human health. The application of natural antioxidants and anti-inflammatory agents can help prevent and mitigate these associated diseases. In this study, we aimed to investigate the effectiveness of walnut green husk (WNGH) as an antioxidant and anti-inflammatory agent in an in vitro setting.

View Article and Find Full Text PDF

Backgrounds: Abuse of feed supplement can cause oxidative stress and inflammatory responses in Gallus gallus. Synbiotics are composed of prebiotics and probiotics and it possess huge application potentials in the treatment of animal diseases.

Methods: This study examined the effect of d-tagatose on the probiotic properties of L.

View Article and Find Full Text PDF

Brucella is a gram negative, facultative intracellular bacterial pathogen that constitutes a substantial threat to human and animal health. Brucella can replicate in a variety of tissues and can induce immune responses that alter host metabolite availability. Here, mice were infected with B.

View Article and Find Full Text PDF

Lipopolysaccharides (LPS) are major components of Gram-negative bacteria. LPS not only induce endotoxemia and inflammation, but also contribute to various diseases. In experimental settings, LPS administration serves as a model for acute inflammatory responses.

View Article and Find Full Text PDF

Update on Hepatorenal Syndrome: From Pathophysiology to Treatment.

Annu Rev Med

January 2025

Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA; email:

Hepatorenal syndrome-acute kidney injury (HRS-AKI) occurs in the setting of advanced chronic liver disease, portal hypertension, and ascites. HRS-AKI is found in ∼20% of patients presenting to the hospital with AKI, but it may coexist with other causes of AKI and/or with preexisting chronic kidney disease, thereby making the diagnosis challenging. Novel biomarkers such as urinary neutrophil gelatinase-associated lipocalin may be useful.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!