A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep convolutional neural network-based patch classification for retinal nerve fiber layer defect detection in early glaucoma. | LitMetric

Glaucoma is a progressive optic neuropathy characterized by peripheral visual field loss, which is caused by degeneration of retinal nerve fibers. The peripheral vision loss due to glaucoma is asymptomatic. If not detected and treated at an early stage, it leads to complete blindness, which is irreversible in nature. The retinal nerve fiber layer defect (RNFLD) provides an earliest objective evidence of glaucoma. In this regard, we explore cost-effective redfree fundus imaging for RNFLD detection to be practically useful for computer-assisted early glaucoma risk assessment. RNFLD appears as a wedge shaped arcuate structure radiating from the optic disc. The very low contrast between RNFLD and background makes its visual detection quite challenging even by medical experts. In our study, we formulate a deep convolutional neural network (CNN) based patch classification strategy for RNFLD boundary localization. A large number of RNFLD and background image patches train the deep CNN model, which extracts sufficient discriminative information from the patches and results in accurate RNFLD boundary pixel classification. The proposed approach is found to achieve enhanced RNFLD detection performance with sensitivity of 0.8205 and false positive per image of 0.2000 on a newly created early glaucomatic fundus image database.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6206440PMC
http://dx.doi.org/10.1117/1.JMI.5.4.044003DOI Listing

Publication Analysis

Top Keywords

retinal nerve
12
deep convolutional
8
convolutional neural
8
patch classification
8
nerve fiber
8
fiber layer
8
layer defect
8
early glaucoma
8
rnfld
8
rnfld detection
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!