Population density and temperature correlate with long-term trends in somatic growth rates and maturation schedules of herring and sprat.

PLoS One

Marine Population Modelling Group, Department of Mathematics and Statistics, University of Strathclyde, Glasgow, United Kingdom.

Published: November 2019

We examine long-term trends in the average growth rates and maturation schedules of herring and sprat populations using survey data collected from the North Sea and west of Scotland since the 1960s and 1980s respectively. Otolith age data and maturity data are used to calculate time series of mean lengths at age, von Bertalanffy growth parameters, and probabilistic maturation reaction norms. As the growth and maturation of fish is known to be influenced by temperature and stock abundances, we account for these variables using Generalised Additive Models. Each of the herring populations displayed either steady declines in mean length across multiple age groups, or declines in length followed years later by some recovery. Depending on region, lengths at age of sprat increased or decreased over time. Varying temporal trends in maturation propensity at age and length were observed across herring populations. Many of the trends in growth rate and maturation were correlated to population abundance and/or temperature. In general, abundance is shown to be negatively correlated to growth rates in herring and sprat, and positively correlated with maturation propensity in herring. Temperature is also shown to be correlated to growth and maturation, and although the effect is consistent within species, the temperature effects differ between herring and sprat. This study provides detailed information about long-term trends in growth and maturation, which is lacking for some of these pelagic stocks, especially in the west of Scotland.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6402831PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0212176PLOS

Publication Analysis

Top Keywords

herring sprat
16
long-term trends
12
growth rates
12
growth maturation
12
maturation
9
growth
8
rates maturation
8
maturation schedules
8
schedules herring
8
west scotland
8

Similar Publications

Limited Parallelism in Genetic Adaptation to Brackish Water Bodies in European Sprat and Atlantic Herring.

Genome Biol Evol

July 2024

Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.

The European sprat is a small plankton-feeding clupeid present in the northeastern Atlantic Ocean, in the Mediterranean Sea, and in the brackish Baltic Sea and Black Sea. This species is the target of a major fishery and, therefore, an accurate characterization of its genetic population structure is crucial to delineate proper stock assessments that aid ensuring the fishery's sustainability. Here, we present (i) a draft genome assembly, (ii) pooled whole genome sequencing of 19 population samples covering most of the species' distribution range, and (iii) the design and test of a single nucleotide polymorphism (SNP)-chip resource and use this to validate the population structure inferred from pooled sequencing.

View Article and Find Full Text PDF

eDNA based bycatch assessment in pelagic fish catches.

Sci Rep

February 2024

Section for Marine Living Resources, National Institute of Aquatic Resources (DTU Aqua), Technical University of Denmark (DTU), Silkeborg, Denmark.

Pelagic fish like herring, sardines, and mackerel constitute an essential and nutritious human food source globally. Their sustainable harvest is promoted by the application of precise, accurate, and cost-effective methods for estimating bycatch. Here, we experimentally test the new concept of using eDNA for quantitative bycatch assessment on the illustrative example of the Baltic Sea sprat fisheries with herring bycatch.

View Article and Find Full Text PDF

Insights into planktonic food-web dynamics through the lens of size and season.

Sci Rep

January 2024

Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, 59000, Lille, France.

Knowledge of the trophic structure and variability of planktonic communities is a key factor in understanding food-web dynamics and energy transfer from zooplankton to higher trophic levels. In this study, we investigated how stable isotopes of mesozooplankton species varied seasonally (winter, spring, autumn) in relation to environmental factors and plankton size classes in a temperate coastal ecosystem. Our results showed that spring is characterized by the strongest vertical and size-structured plankton food-web, mainly fueled by the phytoplankton bloom.

View Article and Find Full Text PDF

Due to the growth of aquaculture and the finite supply of fishmeal and oil, alternative marine protein and lipid sources are highly sought after. Particularly promising is the use of side streams from the fish processing industry, allowing for the recovery and retention of otherwise lost nutrients in the food production chain. The aim of the present study was to evaluate the potential of three fish processing side streams as fish feed ingredients.

View Article and Find Full Text PDF

Fish are often speckled with "black spots" caused by metacercarial trematode infection, inducing a host response. Cryptocotyle spp. (Opisthorchiidae) are among the parasites responsible for this phenomenon.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!