There is a synergistic relationship between analog field testing and the deep space telecommunication capabilities necessary for future human exploration. The BASALT (Biologic Analog Science Associated with Lava Terrains) research project developed and implemented a telecommunications architecture that serves as a high-fidelity analog of future telecommunication capabilities for Mars. This paper presents the architecture and its constituent elements. The rationale for the various protocols and radio frequency (RF) link types required to enable an interdisciplinary field mission are discussed, and the performance results from the BASALT field tests are provided. Extravehicular Informatics Backpacks (EVIB) designed for BASALT and tested by human subjects are also discussed, and the proceeding sections show how these prototype extravehicular activity (EVA) information systems can augment future human exploration. The paper concludes with an aggregate analysis of the data product types and data volumes generated, transferred, and utilized by the ground team and explorers over the course of the field deployments.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ast.2018.1906DOI Listing

Publication Analysis

Top Keywords

telecommunication capabilities
8
future human
8
human exploration
8
flexible telecommunication
4
telecommunication architecture
4
human
4
architecture human
4
human planetary
4
planetary exploration
4
exploration based
4

Similar Publications

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting millions worldwide, leading to cognitive and functional decline. Early detection and intervention are crucial for enhancing the quality of life of patients and their families. Remote Monitoring Technologies (RMTs) offer a promising solution for early detection by tracking changes in behavioral and cognitive functions, such as memory, language, and problem-solving skills.

View Article and Find Full Text PDF

This research proposes an all-metal metamaterial-based absorber with a novel geometry capable of refractive index sensing in the terahertz (THz) range. The structure consists of four concentric diamond-shaped gold resonators on the top of a gold metal plate; the resonators increase in height by 2 µm moving from the outer to the inner resonators, making the design distinctive. This novel configuration has played a very significant role in achieving multiple ultra-narrow resonant absorption peaks that produce very high sensitivity when employed as a refractive index sensor.

View Article and Find Full Text PDF

Remote Radio Frequency Sensing Based on 5G New Radio Positioning Reference Signals.

Sensors (Basel)

January 2025

Institute of Telecommunications, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland.

In this paper, the idea of a radar based on orthogonal frequency division multiplexing (OFDM) is applied to 5G NR Positioning Reference Signals (PRS). This study demonstrates how the estimation of the communication channel using the PRS can be applied for the identification of objects moving near the 5G NR receiver. In this context, this refers to a 5G NR base station capable of detecting a high-speed train (HST).

View Article and Find Full Text PDF

The advent of millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems, coupled with reconfigurable intelligent surfaces (RISs), presents a significant opportunity for advancing wireless communication technologies. This integration enhances data transmission rates and broadens coverage areas, but challenges in channel estimation (CE) remain due to the limitations of the signal processing capabilities of RIS. To address this, we propose an adaptive channel estimation framework comprising two algorithms: log-sum normalized least mean squares (Log-Sum NLMS) and hybrid normalized least mean squares-normalized least mean fourth (Hybrid NLMS-NLMF).

View Article and Find Full Text PDF

With the advent of the 5G era, high-precision localization based on mobile communication networks has become a research hotspot, playing an important role in indoor emergency rescue in shopping malls, smart factory management and tracking, as well as precision marketing. However, in complex environments, non-line-of-sight (NLOS) propagation reduces the measurement accuracy of 5G signals, causing large deviations in position solving. In order to obtain high-precision position information, it is necessary to recognize the propagation state of the signal before distance measurement or angle measurement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!