Physiological cAMP-elevating secretagogues differentially regulate fluid and protein secretions in mouse submandibular and sublingual glands.

Am J Physiol Cell Physiol

Secretory Mechanisms and Dysfunction Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland.

Published: May 2019

The mechanisms underlying the functional differences in sympathetic and parasympathetic regulation of the major salivary glands have received little attention. The acute effects of parasympathetic muscarinic (carbachol)-dependent and combined parasympathetic-dependent plus cAMP-dependent pathways on fluid secretion rates, ion composition, and protein content were assessed using a newly developed ex vivo preparation that allows the simultaneous perfusion of the mouse submandibular (SMGs) and sublingual glands (SLGs). Our results confirm that the muscarinic-dependent pathway accounts for the bulk of salivation in SMGs and SLGs, whereas costimulation with a cAMP-increasing agent (forskolin, isoproterenol, or vasoactive intestinal peptide) did not increase the flow rate. Costimulation with carbachol plus the β-adrenergic agonist isoproterenol decreased the concentration of NaCl and produced a substantial increase in the protein and Ca content of SMG but not SLG saliva, consistent with a sparse sympathetic innervation of the SLGs. On the other hand, forskolin, which bypasses receptors to increase intracellular cAMP by directly activating the enzyme adenylate cyclase, enhanced the secretion of protein and Ca by both the SMGs and SLGs. In contrast, isoproterenol and vasoactive intestinal peptide specifically stimulated protein secretion in SMG and SLG salivas, respectively. In summary, cAMP-dependent signaling does not play a major role in the stimulation of fluid secretion in SMGs and SLGs, whereas each cAMP-increasing agonist behaves differently in a gland-specific manner suggesting differential expression of G protein-coupled receptors in the epithelial cells of SMGs and SLGs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6580159PMC
http://dx.doi.org/10.1152/ajpcell.00421.2018DOI Listing

Publication Analysis

Top Keywords

smgs slgs
16
mouse submandibular
8
sublingual glands
8
fluid secretion
8
protein content
8
isoproterenol vasoactive
8
vasoactive intestinal
8
intestinal peptide
8
smg slg
8
slgs
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!