Underlying Role of Brushite in Pathological Mineralization of Hydroxyapatite.

J Phys Chem B

Institut für Mineralogie , University of Münster, Münster 48149 , Germany.

Published: April 2019

AI Article Synopsis

  • The majority of human kidney stones are made up of calcium oxalate crystals, often starting with dicalcium phosphate dihydrate (DCPD) and transforming into hydroxyapatite (HAP) under certain conditions.
  • The study investigates how this transformation occurs, particularly focusing on how natural inhibitors like osteopontin (OPN) proteins influence the process.
  • Through advanced imaging techniques, researchers identified new calcium phosphate phases during the transformation and confirmed that OPN peptides can inhibit the dissolution and reformation of DCPD, shedding light on kidney stone formation and potential treatments.

Article Abstract

The majority of human kidney stones are composed of multiple calcium oxalate crystals with variable amounts of brushite [dicalcium phosphate dihydrate (DCPD)] and hydroxyapatite (HAP) as a nucleus, in which fluid-mediated dissolution and reprecipitation may result in the phase transformation of DCPD to HAP. However, the underlying mechanisms of the phase transition and its modulation by natural inhibitors, such as osteopontin (OPN) proteins, remain poorly understood. Here, the in vitro formation of new phases on the DCPD (010) surface is observed in situ using atomic force microscopy in a simulated hypercalciuria milieu. We demonstrate the presence of an acidic amorphous calcium phosphate (ACP) phase with a characteristic Raman band of νHPO and the octacalcium phosphate (OCP)-like phase during the transformation process. High-resolution transmission electron microscopy analyses also confirm the existence of OCP and HAP within an amorphous matrix phase. In support of clinical observations, we further demonstrate the inhibitory effect of OPN peptide segments on the dissolution of DCPD and reprecipitation of acidic ACP. The definition of respective roles of DCPD and OPN thereby provides insights into the control of nucleus formation and subsequent inhibition of pathological mineralization.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.9b00728DOI Listing

Publication Analysis

Top Keywords

pathological mineralization
8
phase transformation
8
phase
5
underlying role
4
role brushite
4
brushite pathological
4
mineralization hydroxyapatite
4
hydroxyapatite majority
4
majority human
4
human kidney
4

Similar Publications

Extracellular vesicles: essential agents in critical bone defect repair and therapeutic enhancement.

Mol Biol Rep

January 2025

Pediatric Cell, and Gene Therapy Research Center Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.

Bone serves as a fundamental structural component in the body, playing pivotal roles in support, protection, mineral supply, and hormonal regulation. However, critical-sized bone injuries have become increasingly prevalent, necessitating extensive medical interventions due to limitations in the body's capacity for self-repair. Traditional approaches, such as autografts, allografts, and xenografts, have yielded unsatisfactory results.

View Article and Find Full Text PDF

This study evaluates the nutritional potential of two cultivated snail species, and , sourced from commercial farms in Korea, marking the first comprehensive analysis of . The protein content of (70.9 g/100 g dry matter) was significantly higher than that of (44.

View Article and Find Full Text PDF

Inflammation significantly influences cellular communication in the oral environment, impacting tissue repair and regeneration. This study explores the role of small extracellular vesicles (sEVs) derived from lipopolysaccharide (LPS)-treated stem cells from the apical papilla (SCAP) in modulating macrophage polarization and osteoblast differentiation. SCAPs were treated with LPS for 24 h, and sEVs from untreated (SCAP-sEVs) and LPS-treated SCAP (LPS-SCAP-sEVs) were isolated via ultracentrifugation and characterized using transmission electron microscopy, Western blot, and Tunable Resistive Pulse Sensing.

View Article and Find Full Text PDF

Objective: Combining oblique lumbar interbody fusion (OLIF) with posterior pedicle screw fixation (PPSF) has been proposed to reduce cage subsidence, especially in osteoporotic spines. Recently, anterolateral screw-rod fixation has gained interest as it allows direct pathology observation and avoids a posterior approach. However, controversies exist between anterolateral screw fixation systems and traditional PPSF due to variations in osteoporotic vertebral mineral density, screw fixation positions, and fixation methods (bicortical vs.

View Article and Find Full Text PDF

Common bean (Phaseolus vulgaris L.) is a crop rich in protein, minerals, and starch. Viruses are a significant limiting factor in increasing the production of legumes, particularly common beans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!