Despite massive efforts to pinpoint the substituent effects in the so-called cationπ systems, no consensus has been yet reached on how substituents exercise their effects in the interaction of the aromatic molecule with the metal ion. The π-polarization (the Hunter model) and the direct local effect (the Wheeler-Houk model) are two lines of thought applied to this problem, but the justification of both approaches is based on insufficiently proven assumptions and approximations. In order to shed more light on this issue we propose a new approach which enables us to gauge directly the energetic trends resulting from the interaction of the ring with the cation. In our method we add one more partitioning level to the interacting quantum atoms (IQA) scheme and decompose the IQA interaction energies into contributions resulting from σ and π electron densities of the aromatic ring. The new approach, which is named partitioned-IQA, abbreviated as p-IQA, has been applied to complexes of derivatives of benzene or azaborine interacting with a sodium cation. The p-IQA approach reveals that in these systems both σ and π electronic moieties are polarized. Interestingly, for the majority of cases the σ-polarization outweighs the π one, contrary to the Hunter model. However, the Wheeler-Houk model is not precise, either, since the σ-polarization shows some degree of non-locality. In addition, the substituents are found to have a negligible influence on the ring orbital-overlapping capability, i.e. the covalency. Therefore, the substituent effect in the cationπ interaction is a nonlocal classical effect, indicating that neither Hunter model nor Wheeler-Houk model is able to fully describe all the aspects of the substituent effects. The p-IQA conclusions for the considered systems have been compared with the results from the functional-group SAPT (F-SAPT) method. We believe that the presented partitioning in the IQA framework will provide a deeper insight into the substituent effects in the cationπ interactions, which is beyond the σ-π atomic charge population separation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8cp04962a | DOI Listing |
J Phys Chem B
January 2025
Intermolecular Interaction Laboratory, Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
This study extends previous research, particularly focusing on patented scientific objects No. ID: PL 240 353 B1, investigating the physicochemical properties of the methyl 3-azido- and 3-amino-2,3-dideoxysaccharides with a nucleoside scaffold similar to 3'-azidothymidine (AZT). The study utilizes multiwavelength spectrophotometric and potentiometric methods to evaluate the ionization of the saccharide units in aqueous solutions.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China.
The initial decomposition reactions of 1,3,5-trinitrobenzene (TNB), picric acid (PA), 2,4,6-trinitrotoluene (TNT), 2,4,6-trinitroaniline (TNA) and 2,4,6-trinitrophenylmethylnitramine (Tetryl) were studied using ReaxFF-lg molecular dynamics simulations, and the substituent effect on the thermal decomposition behaviours of nitrobenzene compounds was evaluated through the reactant number, initial decomposition pathway, products and cluster analysis. The results show that the introduction of substituents could promote the decomposition of the reactants, increase the frequency of the nitro-nitrito isomerization reaction and intermolecular H or O atom transfer reaction, and reduce the frequency of the direct nitro dissociation reaction. Notably, these effects were most obvious in the case of TNT.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, 0179, Tbilisi, Georgia. Electronic address:
Background: Isotopologues resulting from the labelling of molecules with deuterium have attracted interest due to the isotope effect observed in chemistry and biosciences. Isotope effect may also play out in noncovalent interactions and mechanisms leading to intermolecular recognition. In chromatography, differences in retention time between isotopologues, as well as between isotopomers have been observed resulting in two different elution sequences (isotope effects): the normal isotope effect when heavier isotopologues retain longer than lighter analogues, and the inverse isotope effect featuring the opposite elution order.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Scuola Superiore Meridionale, Napoli, Italy.
Light-driven molecular rotary motors are nanometric machines able to convert light into unidirectional motions. Several types of molecular motors have been developed to better respond to light stimuli, opening new avenues for developing smart materials ranging from nanomedicine to robotics. They have great importance in the scientific research across various disciplines, but a detailed comprehension of the underlying ultrafast photophysics immediately after photo-excitation, that is, Franck-Condon region characterization, is not fully achieved yet.
View Article and Find Full Text PDFMolecules
January 2025
Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
Building on our previous studies, which have demonstrated that homochiral propagating species-(*,*)-[MeGa(-OCH(Me)COR)]-were crucial for the heteroselectivity of [MeGa(-OCH(Me)COMe)] in the ring-opening polymerization (ROP) of racemic lactide (-LA), we have investigated the effect of alkyl groups on the structure and catalytic properties of dialkylgallium alkoxides in the ROP of -LA. Therefore, we have isolated and characterized the -[RGa(-OCH(Me)COMe] (R = Et (), Pr () and -[RGa(-OCH(Me)CHN] (R = Et (), Pr ()) complexes, to demonstrate the effect of alkyl groups on the chiral recognition induced the formation of the respective homochiaral species-(*,*)-[RGa(-OCH(Me)COMe)] and (*,*)-[RGa(-OCH(Me)CHN]. Moreover, we have investigated the structure of (,)-[RGa(-OCH(Me)COMe] (R = Et ((,)-, R = Pr ((,)-,) and their catalytic activity in the ROP of -LA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!