Mercury released into the atmosphere from coal combustion is harmful to humans and the environment. Rice husk gasification char (RHGC) is an industrial waste of biomass gasification power generation, which is silver-loaded to develop a novel and efficient sorbent for mercury removal from simulated flue gas. The experiment was carried out in a fixed-bed experimental system. The Hg adsorption performance of RHGC was improved significantly after loading silver. Hg adsorption capacity and mercury inlet concentration were found to be nonlinear. The adsorption capacity of RHGC decreased with the increase of reaction temperature. SO inhibited mercury removal, NO and HCl promoted mercury removal; the Hg adsorption capacity in the simulated flue gas was higher than that in pure N. The silver-loaded rice husk gasification char (SRHGC) could be recycled about five times without significantly losing its removal efficiency. The SRHGC will not only reduce the cost of mercury removal but also save energy and reduce environmental pollution. At the same time, it provides a new way for the resource utilization of RHGC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170578 | PMC |
http://dx.doi.org/10.1098/rsos.180248 | DOI Listing |
Int J Biol Macromol
January 2025
International Center for Interdisciplinary Research and Innovation of Silsesquioxane Science, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China. Electronic address:
Environ Pollut
January 2025
School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
Sci Total Environ
January 2025
Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Siliguri, West Bengal, India. Electronic address:
More and more research is now being focused on the mercury contamination of remote mountain environments. This study aimed to explore the mountain soil of Tiger Hill, Darjeeling, through the lens of its mercury tolerant bacterial microbiome to characterize regional mercury pollution and isolate strains with mercury bioremediation potential. The soil bacteria isolated from the region displayed an extreme tolerance to mercury at previously unseen levels of up to 7 mg/mL.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
Adsorption is one of the most promising strategies for heavy metal removal. For Hg(II) removal, mineralized Ca-based shell-type self-assembly beads (MCABs) using alginate as organic polymer template were synthesized in this work. The adsorbent preparation consists of gelation of a Ca-based spherical polymer template (CAB) and rate-controlled self-assembly mineralization in bicarbonate solution with various concentrations.
View Article and Find Full Text PDFMicroorganisms
December 2024
Marine Bioprospecting Line, Evaluation and Use of Marine and Coastal Resources Program-VAR, Marine and Coastal Research Institute-INVEMAR, Santa Marta 470006, Magdalena, Colombia.
Mercury pollution is a significant environmental issue, primarily resulting from industrial activities, including gold mining extraction. In this study, 333 microorganisms were tested in increasing mercury concentrations, where 158 bacteria and 14 fungi were able to grow and remain viable at concentrations over 5.0 mg/L of mercuric chloride (II).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!