A single-chamber microbial fuel cell (MFC) was used in this study to treat recycled stillage obtained from food waste ethanol fermentation. Corresponding substrates inside the system were evaluated by fluorescence spectra, and microbial communities were also investigated. Results demonstrated that output voltage and current, respectively, reached 0.29 V and 1.4 mA with an external resistance of 200 Ω. Corresponding total organic carbon and chemical oxygen demand removal efficiency reached more than 50% and 70%, respectively. Results of fluorescence spectra demonstrated that tryptophan-like aromatic, soluble microbial by-product-like and humic acid-like substances accumulated and were not easily degraded. Microbial community analysis by high-throughput sequence indicated that and occupied the highest proportion among all genera at the anode instead of . These results may be due to complicated accumulated stillage, and potential tetracyclines possibly influenced microbial communities. Details on how stillage affects MFC operation should be further studied, and a solution on relieving effects should be established.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170538 | PMC |
http://dx.doi.org/10.1098/rsos.180457 | DOI Listing |
ACS Synth Biol
November 2024
Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
Microbial electrochemical systems (MESs), as a green and sustainable technology, can decompose organics in wastewater to recover bioelectricity. Electroactive biofilms, a microbial community structure encased in a self-produced matrix, play a decisive role in determining the efficiency of MESs. However, as an essential component of the biofilm matrix, the role of exopolysaccharides in electroactive biofilm formation and their influence on extracellular electron transfer (EET) have been rarely studied.
View Article and Find Full Text PDFJ Environ Manage
September 2024
Department of Biosystems and Agricultural Engineering, University of Kentucky, 128 CE Barnhart Building, Lexington, KY, USA. Electronic address:
Stillage of American whiskey (e.g., bourbon) manufacturing is an abundant byproduct that is distinguished from fuel ethanol and malt whisky stillage materials by its highly inconsistent nature due to variability in mash bill composition.
View Article and Find Full Text PDFFood Chem
October 2024
School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China. Electronic address:
Laccase mediators possess advantage of oxidizing substrates with high redox potentials, such as aflatoxin B (AFB). High costs of chemically synthesized mediators limit laccase industrial application. In this study, thin stillage extract (TSE), a byproduct of corn-based ethanol fermentation was investigated as the potential natural mediator of laccases.
View Article and Find Full Text PDFFoods
November 2023
Department of Food Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
Mycotoxins (ochratoxin A (20 ppb), aflatoxin B1 (40 ppb), deoxynivalenol (4 ppm), and zearalenone (800 ppb)) were intentionally added to rice bran raw materials. After fermentation, their contents were determined in the distillate and distillery stillage obtained using single-stage and continuous pilot plant-scale columns. After single-stage distillation, aflatoxin B1, deoxynivalenol, and zearalenone were not detected in the distillate, indicating that even if a certain amount (four times the maximum residue limit (MRL)) was present in the raw material, it would not remain in the distillate after fermentation and distillation.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2024
São Carlos Engineering School (EESC), Center of Water Resources and Environmental Studies (CRHEA), Nucleus of Ecotoxicology and Applied Ecology (NEEA), University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil.
Brazil is a major producer of sugarcane bioethanol, which has raised concerns about its environmental impact. The industrial process for obtaining ethanol generates a by-product with a high pollution potential called vinasse. If vinasse reaches watercourses, it may affect the biological communities, such as the aquatic macroinvertebrates, which include species sensitive to environmental contamination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!