Stretchable electronic and optoelectronic devices based on controllable ordered buckling structures exhibit superior mechanical stability by retaining their buckling profile without distortion in repeated stretch-release cycles. However, a simple and universal technology to introduce ordered buckling structures into stretchable devices remains a real challenge. Here, a simple and general stencil-pattern transferring technology was applied to stretchable organic light-emitting devices (SOLEDs) and polymer solar cells (SPSCs) to realize an ordered buckling profile. To the best of our knowledge, both the SOLEDs and SPSCs with periodic buckles exhibited the highest mechanical robustness by operating with small performance variations after 20,000 and 12,000 stretch-release cycles between 0% and 20% tensile strain, respectively. Notably, in this work, periodic-buckled structures were introduced into SPSCs for the first time, with the number of stretch-release cycles for the SPSCs improved by two orders of magnitude compared to that for previously reported random-buckled stretchable organic solar cells. The simple method used in this work provides a universal solution for low-cost and high-performance stretchable electronic and optoelectronic devices and promotes the commercial development of stretchable devices in wearable electronics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6106994 | PMC |
http://dx.doi.org/10.1038/s41377-018-0041-x | DOI Listing |
Science
January 2025
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.
Emerging wearable devices would benefit from integrating ductile photovoltaic light-harvesting power sources. In this work, we report a small-molecule acceptor (SMA), also known as a non-fullerene acceptor (NFA), designed for stretchable organic solar cell (-OSC) blends with large mechanical compliance and performance. Blends of the organosilane-functionalized SMA BTP-Si4 with the polymer donor PNTB6-Cl achieved a power conversion efficiency (PCE) of >16% and ultimate strain (ε) of >95%.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
West China Women's and Children's Hospital, Sichuan University, Chengdu 610041, Sichuan, China. Electronic address:
Achilles tendon rupture is a common and serious condition that remains a challenge in the restoration of tendon structure and function. The design and use of high-performance piezoelectric materials serve as an effective solution to enhance repair outcomes, shorten recovery times, and reduce the risk of recurrence. In this study, we prepared a chitosan piezoelectric gel (CSPG) as an organic polymer with excellent biocompatibility, stretchability, and piezoelectric properties as well as excellent antibacterial properties.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium.
The next generation of soft electronics will expand to the third dimension. This will require the integration of mechanically compliant 3D functional structures with stretchable materials. Here, omnidirectional direct ink writing (DIW) of poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) aerogels with tunable electrical and mechanical performance is demonstrated, which can be integrated with soft substrates.
View Article and Find Full Text PDFACS Nano
January 2025
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China.
Flexible electronic devices in biomedicine, environmental monitoring, and brain-like computing have garnered significant attention. Among these, organic electrochemical transistors (OECTs) have been spotlighted in flexible sensors and neuromorphic circuits for their low power consumption, high signal amplification, excellent biocompatibility, chemical stability, stretchability, and flexibility. However, OECTs will also face some challenges on the way to commercialized applications, including the need for improved long-term stability, enhanced performance of N-type materials, integration with existing technologies, and cost-effective manufacturing processes.
View Article and Find Full Text PDFNat Commun
January 2025
CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
Developing active-layer systems with both high performance and mechanical robustness is a crucial step towards achieving future commercialization of flexible and stretchable organic solar cells (OSCs). Herein, we design and synthesize a series of acceptors BTA-C6, BTA-E3, BTA-E6, and BTA-E9, featuring the side chains of hexyl, and 3, 6, and 9 carbon-chain with ethyl ester end groups respectively. Benefiting from suitable phase separation and vertical phase distribution, the PM6:BTA-E3-based OSCs processed by o-xylene exhibit lower energy loss and improved charge transport characteristic and achieve a power conversion efficiency of 19.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!