The strong optical chirality arising from certain synthetic metamaterials has important and widespread applications in polarization optics, stereochemistry and spintronics. However, these intrinsically chiral metamaterials are restricted to a complicated three-dimensional (3D) geometry, which leads to significant fabrication challenges, particularly at visible wavelengths. Their planar two-dimensional (2D) counterparts are limited by symmetry considerations to operation at oblique angles (extrinsic chirality) and possess significantly weaker chiro-optical responses close to normal incidence. Here, we address the challenge of realizing strong intrinsic chirality from thin, planar dielectric nanostructures. Most notably, we experimentally achieve near-unity circular dichroism with ~90% of the light with the chosen helicity being transmitted at a wavelength of 540 nm. This is the highest value demonstrated to date for any geometry in the visible spectrum. We interpret this result within the charge-current multipole expansion framework and show that the excitation of higher-order multipoles is responsible for the giant circular dichroism. These experimental results enable the realization of high-performance miniaturized chiro-optical components in a scalable manner at optical frequencies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6060067 | PMC |
http://dx.doi.org/10.1038/lsa.2017.158 | DOI Listing |
MethodsX
December 2024
Department of Electrical Engineering, College of Engineering Al-Hussein Bin Talal, University, Ma'an 71111, Jordan.
Coplanar waveguide (CPW) transmission lines are valued for their planar design, low radiation, and minimized signal loss, but controlling their characteristic impedance remains a challenge. This study employs the Taguchi method, a statistical approach, to optimize the characteristic impedance by adjusting eight control factors: track width, track thickness, gap width, dielectric height, backplane thickness, conductor material conductivity, dielectric conductivity, and operational frequency. The analysis evaluates these factors across three levels to find optimal conditions, with dielectric height and track width identified as most influential.
View Article and Find Full Text PDFAppl Phys Lett
January 2024
Communications Technology Laboratory, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA.
Fused silica has become an interesting alternative to silicon for millimeter-wave (mmWave) applications. Unfortunately, there are a few reports on the measurement of fused silica's permittivity above 110 GHz that use electrical rather than optical methods. Given that mmWave applications use electrical circuits, additional electrical data would be useful to industry.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany.
We investigate the anisotropic frequency-dependent dielectric, THz and IR response of liquid water confined between two planar graphene sheets with force-field- and density-functional-theory-based molecular dynamics simulations. Using spatially resolved anisotropic spectra, we demonstrate the critical role of the volume over which the spectral response is integrated when reporting spatially averaged electric susceptibilities. To analyze the spectra, we introduce a unique decomposition into bulk, interfacial, and confinement contributions, which reveals that confinement effects on the spectra occur only for systems with graphene separation below 1.
View Article and Find Full Text PDFNanophotonics
July 2024
POLIMA - Center for Polariton-Driven Light-Matter Interactions, University of Southern Denmark, DK-5230 Odense, Denmark.
Nonlocal and quantum mechanical phenomena in noble metal nanostructures become increasingly crucial when the relevant length scales in hybrid nanostructures reach the few-nanometer regime. In practice, such mesoscopic effects at metal-dielectric interfaces can be described using exemplary surface-response functions (SRFs) embodied by the Feibelman -parameters. Here we show that SRFs dramatically influence quantum electrodynamic phenomena - such as the Purcell enhancement and Lamb shift - for quantum light emitters close to a diverse range of noble metal nanostructures interfacing different homogeneous media.
View Article and Find Full Text PDFFundamental limits of thermal radiation are imposed by Kirchhoff's law, which assumes the electromagnetic reciprocity of a material or material system. Thus, breaking reciprocity can enable breaking barriers in thermal efficiency engineering. In this work, we present a subwavelength, 1D photonic crystal composed of Weyl semimetal and dielectric layers, whose structure was optimized to maximize the nonreciprocity of infrared radiation absorptance in a planar and compact design.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!