Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Semiconductor broadband light emitters have emerged as ideal and vital light sources for a range of biomedical sensing/imaging applications, especially for optical coherence tomography systems. Although near-infrared broadband light emitters have found increasingly wide utilization in these imaging applications, the requirement to simultaneously achieve both a high spectral bandwidth and output power is still challenging for such devices. Owing to the relatively weak amplified spontaneous emission, as a consequence of the very short non-radiative carrier lifetime of the inter-subband transitions in quantum cascade structures, it is even more challenging to obtain desirable mid-infrared broadband light emitters. There have been great efforts in the past 20 years to pursue high-efficiency broadband optical gain and very low reflectivity in waveguide structures, which are two key factors determining the performance of broadband light emitters. Here we describe the realization of a high continuous wave light power of >20 mW and broadband width of >130 nm with near-infrared broadband light emitters and the first mid-infrared broadband light emitters operating under continuous wave mode at room temperature by employing a modulation p-doped InGaAs/GaAs quantum dot active region with a 'J'-shape ridge waveguide structure and a quantum cascade active region with a dual-end analogous monolithic integrated tapered waveguide structure, respectively. This work is of great importance to improve the performance of existing near-infrared optical coherence tomography systems and describes a major advance toward reliable and cost-effective mid-infrared imaging and sensing systems, which do not presently exist due to the lack of appropriate low-coherence mid-infrared semiconductor broadband light sources.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6060043 | PMC |
http://dx.doi.org/10.1038/lsa.2017.170 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!