In this work, we demonstrate that ultraviolet (UV) laser photolysis of hydrocarbon species alters the flame chemistry such that it promotes the diamond growth rate and film quality. Optical emission spectroscopy and laser-induced fluorescence demonstrate that direct UV laser irradiation of a diamond-forming combustion flame produces a large amount of reactive species that play critical roles in diamond growth, thereby leading to enhanced diamond growth. The diamond growth rate is more than doubled, and diamond quality is improved by 4.2%. Investigation of the diamond nucleation process suggests that the diamond nucleation time is significantly shortened and nondiamond carbon accumulation is greatly suppressed with UV laser irradiation of the combustion flame in a laser-parallel-to-substrate geometry. A narrow amorphous carbon transition zone, averaging 4 nm in thickness, is identified at the film-substrate interface area using transmission electron microscopy, confirming the suppression effect of UV laser irradiation on nondiamond carbon formation. The discovery of the advantages of UV photochemistry in diamond growth is of great significance for vastly improving the synthesis of a broad range of technically important materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6060054 | PMC |
http://dx.doi.org/10.1038/lsa.2017.177 | DOI Listing |
Human epidermal growth factor receptor 2 (HER2, also known as ERBB2) signaling promotes cell growth and differentiation, and is overexpressed in several tumor types, including breast, gastric and colorectal cancer. HER2-targeted therapies have shown clinical activity against these tumor types, resulting in regulatory approvals. However, the efficacy of HER2 therapies in tumors with HER2 mutations has not been widely investigated.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China. Electronic address:
Materials (Basel)
December 2024
Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
With the development of diamond technology, its application in the field of electronics has become a new research hotspot. Hydrogen-terminated diamond has the electrical properties of P-type conduction due to the formation of two-dimensional hole gas (2DHG) on its surface. However, due to various scattering mechanisms on the surface, its carrier mobility is limited to 50-200 cm/(Vs).
View Article and Find Full Text PDFNano Lett
January 2025
Department of Physics, Hong Kong Institute for Advanced Study, City University of Hong Kong, Kowloon, Hong Kong 999077, China.
Superconductivity in infinite-layer nickelates has stirred much research interest, to which questions regarding the nature of superconductivity remain elusive. A critical leap forward to address these intricate questions is through the growth of high-crystallinity infinite-layer nickelates, including the "parent" phase. Here, we report the synthesis of a high-quality thin-film nickelate, NdNiO.
View Article and Find Full Text PDFSmall
January 2025
Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH, UK.
Guiding molecular assembly of peptides into rationally engineered nanostructures remains a major hurdle against the development of functional peptide-based nanomaterials. Various non-covalent interactions come into play to drive the formation and stabilization of these assemblies, of which electrostatic interactions are key. Here, the atomistic mechanisms by which electrostatic interactions contribute toward controlling self-assembly and lateral association of ultrashort β-sheet forming peptides are deciphered.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!