Few-layered exfoliated black phosphorus (EBP) has attracted surging interest for electronics, optoelectronics, and catalysis. As compared to excellent progress in electronic and optoelectronic applications, very few reports are available for electrocatalysis by metal-free EBPs. Herein, we couple solution-processable ultrathin EBP nanosheets with higher Fermi level of N-doped graphene (NG) into a new metal-free 2D/2D heterostructure (EBP@NG) with well-designed interfaces and unique electronic configuration, as efficient and durable bifunctional catalysts toward hydrogen evolution and oxygen evolution reactions (HER/OER) for overall water splitting in alkaline media. By rational interface engineering, the synergy of EBP and NG is fully exploited, which not only improves the stability of EBP, but also effectively modulates electronic structures of each component to boost their intrinsic activities. Specifically, due to the lower Fermi level of EBP relative to NG, their electronic interaction induces directional interfacial electron transfer, which not only enriches the electron density over EBP and optimizes H adsorption/desorption to promote HER, but also introduces abundant positively charged carbon sites on NG and provides favorable formation of key OER intermediates (OOH*) to improve OER energetics. Thus, despite that pure EBP or NG alone has poor or negligible activity, EBP@NG achieves remarkably enhanced bifunctional HER/OER activities, along with an excellent durability. This endows an optimized electrolyzer using EBP@NG as anode and cathode with a low cell voltage of 1.54 V at 10 mA cm, which is smaller than that of the costly integrated Pt/C@RuO couple (1.60 V).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.9b00154 | DOI Listing |
Chemistry
January 2025
Southeast University, School of Chemistry and Chemical Engineering, Dongnan Daxue Road 2, 211189, Nanjing, CHINA.
The design of well-engineered bifunctional electrocatalysts is crucial for achieving durable and efficient performance in overall water splitting. In this study, Ru-doped FeMn-MOF-74 itself has Ru sites and generates FeMnOOH under catalytic conditions, forming dual active sites for overall water splitting. Density functional theory (DFT) calculations demonstrate that the Ru dopants exhibit optimized binding strength for H* and enhanced hydrogen evolution reaction (HER) performance.
View Article and Find Full Text PDFInorg Chem
January 2025
Eco-Materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China.
The development of robust and effective photoanodes is crucial for photoelectrochemical hydrogen production via total water splitting. Herein, the TaO/α-FeO/Co-Ni PBA (TFPB-1) photoanode was constructed by the compositing n-type TaO and n-type α-FeO followed by the deposition of p-type Co-Ni PBA. The IPCE of TFPB-1 was increased to 35.
View Article and Find Full Text PDFDalton Trans
January 2025
School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150080, China.
In this work, we successfully prepared four POM-based organic-inorganic hybrids, namely, [(CHN)(CHN)][PMoO] (1), [(CHN)(CHN)][PMoO] (2), [(CHN)][PMoO]·4HO (3), and [(CHN)][PMoO] (4) (where CHN = pyridine, CHN = pyrazine, CHN = 2,7-diamino-1,3,4,6,8,9-hexaazaspiro[4.4] nonane, and CHN = 3-amino-1,2,4-triazole), using a hydrothermal method. Compounds 1 and 2 exhibited a lamellar three-dimensional structure.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou 350007, China.
In this study, the NiFe-LDH doped with different Pt group metals (Pt, Ru, Ir, Rh) was prepared as a cocatalyst for photocatalytic H production over g-CN. It is found that the doped NiFe-LDH loaded g-CN generally displays higher photocatalytic activity than the raw NiFe-LDH modified one, where the NiFeRu-LDH loaded g-CN shows the optimal H evolution rate of 77.4 μmol h, about 5.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
In this study, we present a novel approach to achieve the template-free fabrication of nanocage-shaped SrTiO (N-STO) single crystals molten salt flux treatment. Systematic characterizations demonstrate the high crystallinity and low defect density of N-STO. The N-STO single crystals enable overall water splitting (OWS) with hydrogen and oxygen evolution rates of 100.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!