Chondral lesions provide a potential risk factor for development of osteoarthritis. Despite the variety of in vitro studies on lesion degeneration, in vivo studies that evaluate relation between lesion characteristics and the risk for the possible progression of OA are lacking. Here, we aimed to characterize different lesions and quantify biomechanical responses experienced by surrounding cartilage tissue. We generated computational knee joint models with nine chondral injuries based on clinical in vivo arthrographic computed tomography images. Finite element models with fibril-reinforced poro(visco)elastic cartilage and menisci were constructed to simulate physiological loading. Systematically, the lesions experienced increased peak values of maximum principal strain, maximum shear strain, and minimum principal strain in the surrounding chondral tissue (p < 0.01) compared with intact tissue. Depth, volume, and area of the lesion correlated with the maximum shear strain (p < 0.05, Spearman rank correlation coefficient ρ = 0.733-0.917). Depth and volume of the lesion correlated also with the maximum principal strain (p < 0.05, ρ = 0.767, and ρ = 0.717, respectively). However, the lesion area had non-significant correlation with this strain parameter (p = 0.06, ρ = 0.65). Potentially, the introduced approach could be developed for clinical evaluation of biomechanical risks of a chondral lesion and planning an intervention. Statement of Clinical Relevance: In this study, we computationally characterized different in vivo chondral lesions and evaluated their risk of cartilage degeneration. This information is vital in decision-making for intervention in order to prevent post-traumatic osteoarthritis. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jor.24273DOI Listing

Publication Analysis

Top Keywords

principal strain
8
computational evaluation
4
evaluation altered
4
altered biomechanics
4
biomechanics articular
4
articular cartilage
4
lesions
4
cartilage lesions
4
lesions observed
4
observed vivo
4

Similar Publications

Introduction: Aqueous stem bark extracts of Aspidosperma rigidum Rusby, Couroupita guianensis Aubl., Monteverdia laevis (Reissek) Biral, and Protium sagotianum Marchand have been reported as traditional remedies in several countries of the Amazonian region. Despite previous research, further investigation to characterize secondary metabolites and the biological activity of extracts is needed to derive potential applications.

View Article and Find Full Text PDF

The HIPRA-HH-2 was a multicentre, randomized, active-controlled, double-blind, non-inferiority phase IIb clinical trial comparing the immunogenicity and safety of the PHH-1V adjuvanted recombinant vaccine as a heterologous booster against homologous booster with BNT162b2. Interim results demonstrated strong humoral and cellular immune response against the SARS-CoV-2 Wuhan-Hu-1 strain and the Beta, Delta, and Omicron BA.1 variants up to day 98 post-dosing.

View Article and Find Full Text PDF

Paper mulberry is a fiber resource for paper making. Washi, a traditional paper in Japan, has been produced from × , a hybrid between and . Elite strains have been vegetatively propagated and distributed within Japan.

View Article and Find Full Text PDF

The mechanical properties of multi-lithologic reservoir rock masses are complex, and the failure mechanism is not clear. This research belongs to the field of oil and gas exploration and development. Brazilian splitting, and digital image correlation (DIC) tests were performed to study the mechanical properties and failure mechanism of assemblages containing sandstone, shale, and limestone.

View Article and Find Full Text PDF

When underground tunnels in coal mines traverse geological structurally abnormal zones (faults, collapse columns, fractured zones, etc.), excavation-induced unloading leads to instability and failure of the engineering rock mass. Rock masses in fractured zones are in elastic, plastic, and post-peak stress states, and the process of excavation through these zones essentially involves unloading under full stress paths.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!