In this study, graphene nanosheet-supported ultrafine Cu nanoparticles (NPs) encapsulated with thin mesoporous silica (Cu-GO@m-SiO) materials are fabricated with particle sizes ranging from 60 to 7.8 nm and are systematically investigated for the oxidative coupling of amines to produce biologically and pharmaceutically important imine derivatives. Catalytic activity remarkably increased from 76.5% conversion of benzyl amine for 60 nm NPs to 99.3% conversion and exclusive selectivity of N-benzylidene-1-phenylmethanamine for 7.8 nm NPs. The superior catalytic performance along with the outstanding catalyst stability of newly designed catalysts are attributed to the easy diffusion of organic molecules through the porous channel of mesoporous SiO layers, which not only restricts the restacking of the graphene nanosheets but also prevents the sintering and leaching of metal NPs to an extreme extent through the nanoconfinement effect. Density functional theory calculations were performed to shed light on the reaction mechanism and to give insight into the trend of catalytic activity observed. The computed activation barriers of all elementary steps are very high on terrace Cu(111) sites, which dominate the large-sized Cu NPs, but are significantly lower on step sites, which are presented in higher density on smaller-sized Cu NPs and could explain the higher activity of smaller Cu-GO@m-SiO samples. In particular, the activation barrier for the elementary coupling reaction is reduced from 139 kJ/mol on flat terrace Cu(111) sites to the feasible value of 94 kJ/mol at step sites, demonstrating the crucial role of the step site in facilitating the formation of secondary imine products.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b18675DOI Listing

Publication Analysis

Top Keywords

mesoporous silica
8
oxidative coupling
8
catalytic activity
8
terrace cu111
8
cu111 sites
8
step sites
8
nps
6
interface engineering
4
engineering graphene-supported
4
graphene-supported nanoparticles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!