Photocatalyst-free Synthesis of Indazolones under CO Atmosphere.

Chem Asian J

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.

Published: May 2019

A convenient photocatalyst-free method for the synthesis of redox-active 1,2-dihydro-3H-indazol-3-one derivatives from (2-nitroaryl)methanol and amines was developed. The reaction proceeded efficiently at room temperature by irradiation of UV light under CO atmosphere (1.0 atm, flow) without any photocatalysts or additives. This mild, operationally simple method shows wide functional tolerance. The carbamate formed in situ from CO and amine is proposed to be the key of this reaction. Some of these compounds synthesized by the present method were found to exhibit high anticancer activities, which can lower the viability of cancerous cell lines such as HeLa, MCF-7 and U87.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.201900306DOI Listing

Publication Analysis

Top Keywords

photocatalyst-free synthesis
4
synthesis indazolones
4
indazolones atmosphere
4
atmosphere convenient
4
convenient photocatalyst-free
4
photocatalyst-free method
4
method synthesis
4
synthesis redox-active
4
redox-active 12-dihydro-3h-indazol-3-one
4
12-dihydro-3h-indazol-3-one derivatives
4

Similar Publications

Visible-Light-Induced Synthesis of Esters via a Self-Propagating Radical Reaction.

J Org Chem

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.

We herein disclose a visible-light-induced synthesis of aryl esters through the cross-dehydrogenative coupling of aldehydes with phenols using BrCCl, in which phenolate functions as both a substrate and a photosensitizer. This transition-metal- and photocatalyst-free visible-light-induced esterification is suitable for a wide range of substrates and gives moderate to excellent yields (up to 95%). Mechanistic studies provided evidence of a self-propagating radical reaction involving homolytic cleavage of the aldehydic C-H bond and the formation of acyl bromides.

View Article and Find Full Text PDF

Photoinduced Cobaloxime-Catalyzed Regio- and Diastereoselective Hydrogen-Evolution C(sp)-H Phosphorylation of Bicyclo[1.1.0]butanes.

Org Lett

January 2025

Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China.

Radical-initiated functionalization of bicyclo[1.1.0]butanes (BCBs) is a straightforward approach to accessing diverse cyclobutane derivatives.

View Article and Find Full Text PDF

Visible-light-driven metal- and photocatalyst-free cascade 1,4-HAT and dearomative spirocyclization of -benzylacrylamides are described for sustainable synthesis of a variety of pharmaceutically important γ-ketoamides and 2-Azaspiro[4.5]decanes in one pot in good to excellent yields. Readily accessible and nontoxic materials, expensive Ir or Ru photocatalyst-free mild conditions, excellent functional group tolerance, operational simplicity, and scalability enhance the practical value of this protocol.

View Article and Find Full Text PDF

We report, for the first time, a visible-light-promoted Markovnikov hydroalkoxylation of α-trifluoromethyl alkenes with 1,2-diketones. This transformation proceeded smoothly in the presence of a tertiary amine (EtN), providing a series of enol ethers containing the trifluoromethylated tetrasubstituted center in moderate to excellent yields. In this protocol, hydrogen atom transfer between this amine and 1,2-diketone substrate affords a ketyl radical and an α-aminoalkyl radical, which engages in the formation of a radical anion of the α-CF alkene via a single electron transfer.

View Article and Find Full Text PDF

Photoredox-Catalyst-Free Carboxylation of Unactivated Alkenes in DMSO: Synthesis of Polycyclic Indole Derivatives and Aliphatic Acids.

Org Lett

December 2024

Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.

Article Synopsis
  • A new catalyst-free method has been created for adding carboxyl groups to unactivated alkenes using CO radical anions.
  • This approach allows for the efficient production of polycyclic indole derivatives and linear carboxylic acids under mild conditions, either with or without the addition of DABCO in DMSO.
  • This research represents a major advancement in green chemistry, utilizing affordable and easily accessible reagents for functionalizing unactivated alkenes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!