Although metal oxide nanocrystals are often highly active, rapid aggregation (particularly in water) generally precludes detailed solution-state investigations of their catalytic reactions. This is equally true for visible-light-driven water oxidation with hematite α-Fe O nanocrystals, which bridge a conceptual divide between molecular complexes of iron and solid-state hematite photoanodes. We herein report that the aqueous solubility and remarkable stability of polyoxometalate (POM)-complexed hematite cores with 275 iron atoms enable investigations of visible-light-driven water oxidation at this frontier using the versatile toolbox of solution-state methods typically reserved for molecular catalysis. The use of these methods revealed a unique mechanism, understood as a general consequence of fundamental differences between reactions of solid-state metal oxides and freely diffusing "fragments" of the same material.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201900492 | DOI Listing |
Nanomaterials (Basel)
December 2024
State Key Laboratory of Solidifcation Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
Semiconductor polymeric graphitic carbon nitride (g-CN) photocatalysts have garnered significant and rapidly increasing interest in the realm of visible light-driven hydrogen evolution reactions. This interest stems from their straightforward synthesis, ease of functionalization, appealing electronic band structure, high physicochemical and thermal stability, and robust photocatalytic activity. This review starts with the basic principle of photocatalysis and the development history, synthetic strategy, and structural properties of g-CN materials, followed by the rational design and engineering of g-CN from the perspectives of nano-morphological control and electronic band tailoring.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
School of Environmental and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China. Electronic address:
Carbon dots (CDs) mediated g-CN (CN) is a promising visible-light-driven semiconductor in catalyzing peroxymonosulfate (PMS) for aqueous contaminants remediation. However, the poor dispersibility of powered catalyst and its challenging recyclability impede their broader application. Herein, we embedded FeN bridge within the g-CN framework and immobilized g-CN gel beads (CA/FNCCN) through a 3D cross-linking process with sodium alginate.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Centre for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun 130024, China.
Two dimensional β-ketoamine covalent organic frameworks (2D TP-COFs) are one category of promising metal-free catalysts for photocatalytic overall water splitting (OWS) because of their unusual stability and versatile electronic/optical properties. However, none of the currently reported TP-COFs can accomplish the hydrogen evolution (HER) and oxygen evolution reactions (OER) simultaneously without adding any sacrificial agents and cocatalysts. To address this challenging issue, we rationally designed 23 2D TP-COFs by regulating the linkage groups and comprehensively evaluated their OWS activity by using the first-principles method.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education; College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China. Electronic address:
Keto reductases are crucial NAD(P)H-dependent enzymes used for the enantioselective synthesis of alcohols from prochiral ketones. Typically, the NADPH cofactor is regenerated through a second enzyme and/or substrate. However, photocatalytic cofactor regeneration using water as a sacrificial electron and hydrogen donor presents a promising alternative, albeit a challenging one.
View Article and Find Full Text PDFNat Commun
January 2025
Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, China.
Photocatalytic overall water splitting is a promising approach for a sustainable hydrogen provision using solar energy. For sufficient solar energy utilization, this reaction ought to be operated based on visible-light-active semiconductors, which is very challenging. In this work, an F-expedited nitridation strategy is applied to modify the wide-bandgap semiconductor SrTiO for visible-light-driven photocatalytic overall water splitting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!