Self-powered actuation driven by ambient humidity is of practical interest for applications such as hygroscopic artificial muscles. We demonstrate that spider dragline silk exhibits a humidity-induced torsional deformation of more than 300°/mm. When the relative humidity reaches a threshold of about 70%, the dragline silk starts to generate a large twist deformation independent of spider species. The torsional actuation can be precisely controlled by regulating the relative humidity. The behavior of humidity-induced twist is related to the supercontraction behavior of spider dragline silk. Specifically, molecular simulations of MaSp1 and MaSp2 proteins in dragline silk reveal that the unique torsional property originates from the presence of proline in MaSp2. The large proline rings also contribute to steric exclusion and disruption of hydrogen bonding in the molecule. This property of dragline silk and its structural origin can inspire novel design of torsional actuators or artificial muscles and enable the development of designer biomaterials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6397028 | PMC |
http://dx.doi.org/10.1126/sciadv.aau9183 | DOI Listing |
Evolution
January 2025
School of Environmental and Life Sciences (SELS), Faculty of Science and Health, University of Portsmouth, United Kingdom.
Wolff (2024) takes a comparative phylogenetic approach to study the evolution of dragline silk in 164 species of spiders, including both araneid and non-araneid species. Many structural and mechanical properties of dragline silk showed no correlations; however, both tensile strength and toughness correlated with birefringence-an indicator for the directional ordering of protein materials in the silk fibre. These properties do not seem to differ between web-building and non-web-building spiders; many spider families were found to include species that produce super-performing silk as well as species that produce weak-performing silk.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
Spider silk is renowned for its exceptional toughness, with the strongest dragline silk composed of two proteins, MaSp1 and MaSp2, featuring central repetitive sequences and nonrepetitive terminal domains. Although these sequences to spider silk's strength and toughness, the specific roles of MaSp1 and MaSp2 at the atomic level remain unclear. Using AlphaFold3 models and molecular dynamics (MD) simulations, we constructed models of MaSp1 and MaSp2 and validated their stability.
View Article and Find Full Text PDFAdv Healthc Mater
December 2024
Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China.
The advent of bionic skin sensors represents a significant leap forward in the realm of wearable health monitoring technologies. Existing bionic skin technologies face several limitations, including complex and expensive manufacturing processes, low wearing comfort, and challenges in achieving comfortable real-time health monitoring. These shortcomings hinder the widespread adoption and practical utility of bionic skin in various applications.
View Article and Find Full Text PDFCommun Chem
November 2024
Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
Liquid-liquid phase separation (LLPS) of proteins can be considered an intermediate solubility regime between disperse solutions and solid fibers. While LLPS has been described for several pathogenic amyloids, recent evidence suggests that it is similarly relevant for functional amyloids. Here, we review the evidence that links spider silk proteins (spidroins) and LLPS and its role in the spinning process.
View Article and Find Full Text PDFCarbohydr Polym
January 2025
The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China. Electronic address:
Emerging research attentions are focused on the development of fluorescent biomaterials for various biomedical applications, including fluorescence-guided surgery. However, it is still challenging to prepare biomolecules-based fluorescent fibers with both satisfactory biocompatibility and optimal mechanical properties. Here, we develop a fluorescent robust biofiber through using a tetraphenylethene-containing surfactant as the contact points between polysaccharide chains of alginate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!